Computer simulation of sputtering of graphite target in magnetron sputtering device with two zones of erosion

Open access

Abstract

A computer simulation program for discharge in a magnetron sputtering device with two erosion zones was developed. Basic laws of the graphite target sputtering process and transport of sputtered material to the substrate were taken into account in the Monte Carlo code. The results of computer simulation for radial distributions of density and energy flux of carbon atoms on the substrate (at different values of discharge current and pressure of the working gas) confirmed the possibility of obtaining qualitative homogeneous films using this magnetron sputtering device. Also the discharge modes were determined for this magnetron sputtering device, in which it was possible to obtain such energy and density of carbon atoms fluxes, which were suitable for deposition of carbon films containing carbon nanotubes and other nanoparticles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BOGDANOV R.V. KOSTIUKEVICH O.M. Visnik Kiyivskoho nacionalnogo universitetu imeni Tarasa Shevchenka. Seriya: Fizyko-matematichni nauky 1 (2012) 249 (in Ukrainian).

  • [2] BOGDANOV R.V. KOSTIUKEVICH O.M. Problems of Atomic Science and Technology. Series: Plasma Physics (19) 1 (2013) 189.

  • [3] BOGDANOV R. KOSTIUKEVICH O. Visnik Kiyivskoho nacionalnogo universitetu imeni Tarasa Shevchenka.: Radiofizyka ta electronika 20 (2) (2013) 7.

  • [4] DANILIN B.S. Primeneniye nizkotemperaturnoy plazmy dlya naneseniya tonkih plenok M. Energoatomizdat 1989 (in Russian).

  • [5] KUZMICHEV A.I. Magnetronnyie raspilitenye systemy. Kniga 1. Vvedenie v fiziku i tehniku magnetronnogo raspilenija Avers Kiev 2008 (in Russian).

  • [6] DEPLA D. MAHIEU S. AND GREENE J.E. Sputter Deposition Processes Processing in: MARTIN P.M. Handbook of Deposition Technologies for Films and Coatings Third Edition: Science Applications and Technology William Andrew 2010 p. 253.

  • [7] KASHTANOV P.V. SMIRNOV B.M. HIPPLER R. Uspekhi Fizicheskikh Nauk 177 (5) (2007) 473 (in Russian).

  • [8] ANTONENKO S.V. MAL’CEV S.N. Pribory i tekhnika eksperimenta 3 (2005) 150 (in Russian).

  • [9] ANTONENKO S.V. Magnetronnaja tehnologija sozdanija grafitovyh pokrytij nanotrubok i nanostruktur na ih osnove in: Funkcional’nye materialy i vysokochistye veshhestva http://www.edu-cons.net/atlas_last/doc/444/Antonenko_rus.pdf. 2007 (in Russian).

  • [10] SHCHUR D.V. MATYSINA Z.A. ZAGINAYCHENKO S.YU. Uglerodnyye nanomaterialy i fazovyye prevrashcheniya v nikh.: Monografiya Nauka i obrazovaniye Dnepropetrovsk 2007 (in Russian).

  • [11] GRAVES D.B. BRAULT P. J. Phys. D Appl. Phys. 42 (2009) 194011.

  • [12] BULTINCK E. BOGAERTS A. J. Phys. D Appl. Phys. 41 (2008) 202007.

  • [13] MUSSCHOOT J. DEPLA D. HAEMERS J. DE GRYSE R. Plasma Sources Sci. T. 39 (2006) 3989.

  • [14] MUSSCHOOT J. DEPLA D. HAEMERS J. DE GRYSE R. Plasma Sources Sci. T. 41 (2008) 1.

  • [15] QINGQUAN Q. QINGFU L. JINGJING S. JIAO Y. FINLEY J. Plasma Sci. Technol. 10 (6) (2008) 694.

  • [16] KUCHERENKO E.T. Plasmotehnologia-97: Sb. nauch. trudov RIP Vidavets Zaporozhye 1997 p. 121 (in Russian).

  • [17] MUSIL J. VLCEK J. BAROCH P. Magnetron Discharges for Thin Films Plasma Processing in PAULEAU Y. (Ed.) Materials surface processing by directed energy techniques Elsevier 1990 p. 100.

  • [18] VOL’PYAS V.A. GOL’MAN YE.K. Zhurnal tekhnicheskoy fiziki 70 (3) (2000) 13 (in Russian).

  • [19] Razvitiye product union. Tekhnicheskiy spravochnik. at http://razvitie-pu.ru/?page_id=949. 2013 (in Russian).

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,918
5-year IMPACT FACTOR: 0,916



CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 321 194 12
PDF Downloads 180 119 4