Influence of aluminium concentration in Zn0:9V0:1O nanoparticles on structural and optical properties

A. Sayari 1 , 2 , L. El Mir 3 , 4 , S. Al-Heniti 5 , T. Al-Harbi 5 , S. J. Yaghmour 1  und A.A. Al-Ghamdi 5
  • 1 Department of Physics, Faculty of Science, King Abdulaziz University , North Jeddah Branch, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia
  • 2 Equipe de Spectroscopie Raman, Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, El-Manar, 2092 Tunis, Tunisie
  • 3 Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, Riyadh 11623, Saudi Arabia
  • 4 Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l’Environnement, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabés, Tunisia
  • 5 Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia

Abstract

The (V,Al) co-doped ZnO nano-structured powders (Zn0.9-xV0.1AlxO, where x = 0.02, 0.03 and 0.04) were synthesized via the sol-gel technique and their structural and optical properties were investigated. The effect of Al concentration on the structural and optical properties of the Zn0.9-xV0.1AlxO nanopowders was studied using various techniques. The XRD patterns indicate that the samples have a polycrystalline wurtzite structure. The crystallite size increases with increasing the Al content and lies in the range of 23 to 30 nm. The lattice strain, estimated by the Stokes-Wilson equation, decreases when Al content increases. SEM and TEM micrographs show that Zn0.9-xV0.1AlxO powders are the agglomeration of nanoparticles having spherical and hexagonal shapes with dimensions ranging from 20 to 30 nm. FT-IR spectra show a distinct absorption peak at about 500 cm-1 for ZnO stretching modes and other peaks related to OH and H2O bands. Raman spectra confirm the wurtzite structure of the Zn0.9-xV0.1AlxO nanoparticles. The direct band gaps of the synthesized Zn0.9-xV0.1AlxO nanopowders, estimated from the Brus equation and the crystallite sizes deduced from XRD, are around 3.308 eV. The decomposition process of the dried gel system was investigated by thermal gravimetric analysis (TGA).

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] TONOOKA K., BANDO H., AIURA Y., Thin Solid Films, 445 (2003), 327.

  • [2] PARK J.H., JANG S.J., KIM S.S., LEE B.T., Appl. Phys. Lett., 89 (2006), 121108.

  • [3] YU Z.G., WU P., GONG H., Appl. Phys. Lett., 88 (2006), 132114.

  • [4] JOSPH B., GOPCHANDRAN K.G., THOMAS P.V., KOSHY P., VAIDYAN V.K., Mater. Chem. Phys., 58 (1999), 71.

  • [5] CHEN J.J., YU M.H., ZHOU W.L., SUN K., WANG L.M., Appl. Phys. Lett., 87 (2005), 173119.

  • [6] EL MIR L., GHRIBI F., HAJIRI M., BEN AYADI Z., DJESSAS K., CUBUKCU M., VON BARDELEBEN H.J., Thin Solid Films, 519 (2011), 5787.

  • [7] SAYARI A., EL MIR L., KONA Powder Part. J., 32 (2015), DOI:10.14356/kona.2015003.

  • [8] EL MIR L., BEN AYADI Z., RAHMOUNI H., EL GHOUL J., DJESSAS K., VON BARDELEBEN H.J., Thin Solid Films, 517 (2009), 6007.

  • [9] SRINIVASAN G., RAJENDRA KUMAR R.T., KUMAR J., Opt. Mater., 30 (2007), 314.

  • [10] ARREDONDO E.J.L., MALDONADO A., ASOMOZA R., ACOSTA D.R., LIRA M.A.M., OLVERA L., Thin Solid Films, 490 (2005), 132.

  • [11] YUAN G.D., ZHANG W.J., JIE J.S., FAN X., TANG J.X., LEE C.S., LEE S.T., Adv. Mater., 20 (2008), 168.

  • [12] MINAMI T., Thin Solid Films, 516 (2008), 5822.

  • [13] CHUA B.S., XU S., REN Y.P., CHENG Q.J., OSTRIKOV K., J. Alloy. Compd., 485 (2009), 379.

  • [14] CHEN M., PEI Z.L., SUN C., GONG J., HUANG R.F., WEN L.S., Mater. Sci. Eng. B-Adv., 85 (2001), 212.

  • [15] SONG D., ABERLE A.G., XIA J., Appl. Surf. Sci., 195 (2002), 291.

  • [16] EL GHOUL J., BOUGUILA N., G´OMEZ-LOPERA S.A., EL MIR L., Superlattice. Microst., 64 (2013), 451.

  • [17] WOO L.J., HUI K.N., HUI K.S., CHO Y.R., HWAN C.H., Appl. Surf. Sci., 293 (2014), 55.

  • [18] SHEN G.Z., CHO J.H., YOO J.K., YI G.C., LEE C.J., J. Phys. Chem. B, 109 (2005), 5491.

  • [19] CULLITY B.D., STOCK S.R., Elements of X-ray Diffraction, Prentice Hall, New York, 2001.

  • [20] BRUS L.E., J. Chem. Phys., 80 (1984), 4403.

  • [21] STUDENIKIN S.A., GOLEGO N., COCIVERA M., J. Appl. Phys., 84 (1998), 2287.

  • [22] BARICK K., ASLAM M., DRAVID V., BAHADUR D., J. Phys. Chem. C, 112 (2008), 15163.

  • [23] CALLEJA J.M., CARDONA M., Phys. Rev. B, 16 (1977), 3753.

  • [24] DAMEN T.C., PORTO S.P.S., TELL B., Phys. Rev., 142 (1966), 570.

  • [25] CUSCO R., ALARCON-LLADO E., IBANEZ J., ARTUS L., JIMENEZ J., WANG B., CALLAHAN M.J., Phys. Rev. B, 75 (2007), 165202.

  • [26] CHEN Z.Q., KAWASUSO A., XU Y., NARAMOTO H., YUAN X.L., SEKIGUCHI T., SUZUKI R., OHDAIRA T., Phys. Rev. B, 71 (2005), 115213.

  • [27] KASCHNER A., HABOECK U., STRASSBURG M., KACZMARCZYK G., HOFFMANN A., THOMSEN C., ZEUNER A., ALVES H.R., HOFMANN D.M., MEYER B.K., Appl. Phys. Lett., 80 (2002), 1909.

  • [28] GUPTA T.K., J. Mater. Res., 7 (1992), 3280.

  • [29] GOSWAMI N., SEN P., Solid State Commun., 132 (2004), 791.

  • [30] BALACHANDRA KUMAR K., RAJI P., Recent Res. Sci. Technol., 3 (2011), 48.

OPEN ACCESS

Zeitschrift + Hefte

Suche