Investigations on the structural, morphological, optical and electrical properties of undoped and nanosized Zn-doped CdS thin films prepared by a simplified spray technique

M. Anbarasi 1 , V. Nagarethinam 1  and A. Balu 1
  • 1 PG and Research Department of Physics, AVVM Sri Pushpam College, Poondi, 613 503, Tamilnadu, India

Abstract

CdS and Zn-doped CdS (CdS:Zn) thin films have been deposited on glass substrates by spray pyrolysis technique using a perfume atomizer. The influence of Zn incorporation on the structural, morphological, optical and electrical properties of the films has been studied. All the films exhibit hexagonal phase with (0 0 2) as preferential orientation. A shift of the (0 0 2) diffraction peak towards higher diffraction angle is observed with increased Zn doping. The optical studies confirmed that the transparency increases as Zn doping level increases and the film coated with 2 at.% Zn doping has the maximum transmittance of about 90 %. The sheet resistance (Rsh) decreases as the Zn-doping level increases and a minimum value of 1.113 × 103 Ω/sq is obtained for the film coated with 8 at.% Zn dopant. The CdS film coated with 8 at.% Zn dopant has the best structural, morphological and electrical properties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Kar S., Chaudhuri S., Synth. React. Inorg. M., 36 (2006), 289. http://dx.doi.org/10.1080/15533170600596055

  • [2] Afify H.H., Battisha I.K., J. Mater. Sci.-Mater. El., 11 (2000), 373. http://dx.doi.org/10.1023/A:1008945819666

  • [3] Uda H., Sonomura H., Ikegami S., Meas. Sci. Technol., 8 (1997), 86. http://dx.doi.org/10.1088/0957-0233/8/1/012

  • [4] Liu Y.K., Zapien J.A., Geng C.Y., Shan Y.Y., Lee C.S., Lifshitz Y., Lee S.T., Appl. Phys. Lett., 85 (2004), 3241. http://dx.doi.org/10.1063/1.1805714

  • [5] Duan X., Huang F.Y., Agarwal R., Lieber C.M., Nature, 421 (2003), 241. http://dx.doi.org/10.1038/nature01353

  • [6] Acosta D., Magana C., Martinez A., Maldonado A., Sol. Energ. Mat. Sol. C., 82 (2004), 11. http://dx.doi.org/10.1016/j.solmat.2004.01.001

  • [7] Patil B., Naik D., Shrivastave V., Chalcogenide Lett., 8 (2011), 117.

  • [8] Khallaf H., Chai G., Lupan O., Chow L., Park S., Schulte A., Appl. Surf. Sci., 255 (2009), 4129. http://dx.doi.org/10.1016/j.apsusc.2008.10.115

  • [9] Lee J., Yi J., Yang K., Park J., Oh R., Thin Solid Films, 431 (2003), 344. http://dx.doi.org/10.1016/S0040-6090(03)00153-6

  • [10] Bacaksiz E., Tomakin M., Altulbas M., Parlak M., Colagoklu T., J. Phys.-Condens. Mat., 403 (2008), 3740. http://dx.doi.org/10.1016/j.physb.2008.07.006

  • [11] Chandramohan S., Strache T., Sarangi S., Sathyamoorthy R., Som T., Mater. Sci. Eng. BAdv., 171 (2010), 16. http://dx.doi.org/10.1016/j.mseb.2010.03.047

  • [12] Sathyamoorthy R., Sudhagar P., Balerna A., Balasubramanian C., Bellucci S., Popov A.I., Ashokan K., J. Alloy. Compnd., 493 (2010), 240. http://dx.doi.org/10.1016/j.jallcom.2009.12.063

  • [13] Sahay P.P., Nath R.K., Tewari S., Cryst. Res. Technol., 42 (2007), 275. http://dx.doi.org/10.1002/crat.200610812

  • [14] Ashour A., Turk. J. Phys., 17 (2003), 551.

  • [15] Tomita Y., Kawai T., Hatanaka Y., Jpn. J. Appl. Phys., 33 (1994), 3383. http://dx.doi.org/10.1143/JJAP.33.3383

  • [16] Ullrich B., Saki H., Segawa Y., Thin Solid Films, 385 (2001), 220. http://dx.doi.org/10.1016/S0040-6090(00)01902-7

  • [17] Boieriu P., Sporken R., Xin Y., Browning N., Sivananthan S., J. Electron. Mater., 29 (2000), 718. http://dx.doi.org/10.1007/s11664-000-0212-3

  • [18] Pradhan B., Sharma A.K., Ray A.K., J. Cryst. Growth, 304 (2007), 388. http://dx.doi.org/10.1016/j.jcrysgro.2007.03.041

  • [19] Ilieva M., Dimova-Malinovska D., Ranguelov B., Markov I., J. Phys. Condens. Mater., 11 (1999), 10025. http://dx.doi.org/10.1088/0953-8984/11/49/320

  • [20] Atay F., Bilgin V., Akyuz I., Kose S., Mater. Sci. Semicond. Process., 6 (2003), 197. http://dx.doi.org/10.1016/S1369-8001(03)00085-4

  • [21] Anbarasi M., Nagarethinam V.S., Balu A.R., Int. J. Chem. Phys. Sci., 3 (2014), 1.

  • [22] Sivaraman T., Nagarethinam V.S., Balu A.R., J. Mater. Sci. Res., 2 (2014), 6.

  • [23] Wilson K.C., Manikandan E., Bashee Ahamed M., Mwakikunga B.W., J. Alloy. Compd., 585 (2014), 555. http://dx.doi.org/10.1016/j.jallcom.2013.09.185

  • [24] Balu A.R., Nagarethinam V.S., Suganya M., Arunkumar N., Selvan G., J. Electr. Dev., 12 (2012), 739.

  • [25] Dzhafarov T.D., Ongul F., Aydin Yuksel S., Vacuum, 84 (2010), 310. http://dx.doi.org/10.1016/j.vacuum.2009.06.061

  • [26] Narasimman V., Nagarethinam V.S., Balu A.R., Suganya M., Anbarasi M., Usharani K., Int. J. Appl. Res. Eng. Sci., 1 (2014), 7.

  • [27] Chu J., Jin Z., Cai S., Yang J., Hong Z., Thin Solid Films, 520 (2012), 1826. http://dx.doi.org/10.1016/j.tsf.2011.08.101

  • [28] Usharani K., Balu A.R., Shanmugavel G., Suganya M., Nagarethinam V.S., Int. J. Sci. Res. Rev., 2 (2013), 53.

  • [29] Rajashree C., Balu A.R., Nagarethinam V.S., Int. J. ChemTech Res., 6 (2014), 347.

  • [30] Shah N.A., Sagar R.R., Mahmood W., Syed W.A.A., J. Alloy. Compd., 512 (2012), 185. http://dx.doi.org/10.1016/j.jallcom.2011.09.060

  • [31] Wang Y.G., Lau S.P., Lee H.W., Lu S.F., Tay S.K., Zang X.Z., Hing H.H., J. Appl. Phys., 94 (2003), 354. http://dx.doi.org/10.1063/1.1577819

  • [32] Vinodkumar R., Lethy K.J., Arunkumar P.R., Renju Krishnan R., Venugopalan Pillai N., Mahadevan Pillai V.P., Philip R., Mater. Chem. Phys., 121 (2010), 406. http://dx.doi.org/10.1016/j.matchemphys.2010.01.004

  • [33] Kose S., Atay F., Bilgin V., Akyuz I., Ketenci E., Appl. Surf. Sci., 256 (2010), 4299. http://dx.doi.org/10.1016/j.apsusc.2010.02.018

OPEN ACCESS

Journal + Issues

Search