Chemical bath deposition synthesis and electrochemical properties of MnO2 thin film: Effect of deposition time and bath temperature

Open access

Abstract

Manganese dioxide (MnO2) films with different nanostructures were deposited on indium tin oxide (ITO) glasses by using chemical bath deposition (CBD). Deposition temperature and time were varied from 60 °C to 90 °C and from 2 h to 72 h, respectively. The samples have been characterized using an X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and an electrochemical workstation. The films deposited at 60 °C for 8 h showed that obtained nanoflowers had an amorphous nature, while those deposited at higher temperatures of 70, 80 and 90 °C showed a well-developed nanowire and nanorod morphology. However, those which were deposited at 60 °C, showed the best electrochemical properties, including a higher specific capacitance, good rate of performance and a cycling stability (93 % loss of the initial value after 10,000 cycles).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ai Z. Zhang L. Kong F. Liu H. Xing W. Qiu J. Mater. Chem. Phys. 111 (2008) 162. http://dx.doi.org/10.1016/j.matchemphys.2008.03.043

  • [2] Liu Y. Zhang M. Zhang J. Qian Y. J. Solid State Chem. 179 (2006) 1757. http://dx.doi.org/10.1016/j.jssc.2006.02.028

  • [3] Xiao W. Xia H. Fuh J.Y.H. Lu L. J. Power Sources 193 (2009) 935. http://dx.doi.org/10.1016/j.jpowsour.2009.03.073

  • [4] Wei L. Li C. Chu H. Li Y. Dalton T. 40 (2011) 2332. http://dx.doi.org/10.1039/c0dt01073a

  • [5] Li J. Wang N. Zhao Y. Ding Y. Guan L. Electrochem. Commun. 13 (2011) 698. http://dx.doi.org/10.1016/j.elecom.2011.04.013

  • [6] Hou Y. Cheng Y. Hobson T. Liu J. Nano Lett. 10 (2010) 2727. http://dx.doi.org/10.1021/nl101723g

  • [7] Si P. Chen P. Kim D.H. J. Mater. Chem. B 1 (2013) 2696. http://dx.doi.org/10.1039/c3tb20341g

  • [8] Yang G. Wang B. Guo W. Bu Z. Miao C. Xue T. Li H. Mater. Res. Bull 47 (2012) 3120. http://dx.doi.org/10.1016/j.materresbull.2012.08.023

  • [9] Ding K.Q. Int. J. Electrochem. Sc. 5 (2010) 72.

  • [10] Kim S.H. Kim Y.I. Park J.H. Ko J.M. Int. J. Electrochem. Sc. 4 (2009) 1489.

  • [11] Jayalakshmi M. Balasubramanian K. Int. J. Electrochem. Sc. 3 (2008) 1196.

  • [12] Adelkhani H. Ghaemi M. Jafari S.M. J. Power Sources 163 (2007) 1091. http://dx.doi.org/10.1016/j.jpowsour.2006.10.008

  • [13] Adelkhani H. J. Electrochem. Soc. 156 (2009) 791. http://dx.doi.org/10.1149/1.3184344

  • [14] Ghaemi M. Biglari Z. Binder L. J. Power Sources 102 (2001) 29. http://dx.doi.org/10.1016/S0378-7753(01)00777-7

  • [15] Kathalingam A. Ambika N. Kim M.R. Elanchezhiyan J. Chae Y.S. Rhee J.K. Mater. Sci.-Poland 28 (2010) 513.

  • [16] Dubal D.P. Dhawale D.S. Gujar T.P. Lokhande C.D. Appl. Surf. Sci. 257 (2011) 3378. http://dx.doi.org/10.1016/j.apsusc.2010.11.028

  • [17] Prasad K.R. Miura N. Electrochem. Commun. 6 (2004) 1004. http://dx.doi.org/10.1016/j.elecom.2004.07.017

  • [18] Wu M. Snook G.A. Chen G.Z. Fray D.J. Electrochem. Commun. 6 (2004) 499. http://dx.doi.org/10.1016/j.elecom.2004.03.011

  • [19] Biswas S. Drzal L.T. Chem. Mater. 22 (2010) 5667. http://dx.doi.org/10.1021/cm101132g

  • [20] Xiong W. Liu M.X. Gan L.H. Lv Y.K. Li Y. Yang L. J. Power Sources. 196 (2011) 10461. http://dx.doi.org/10.1016/j.jpowsour.2011.07.083

  • [21] Wang D.W. Li F. Cheng H.M. J. Phys. Chem. B 110 (2006) 8570. http://dx.doi.org/10.1021/jp0572683

  • [22] Zhang K. Zhang L.L. Zhao X.S. Wu J. Chem. Mater. 22 (2010) 1392. http://dx.doi.org/10.1021/cm902876u

  • [23] Xu C.H. Sun J. Gao L. J. Mater. Chem. 21 (2011) 11253. http://dx.doi.org/10.1039/c1jm11275a

  • [24] Dubal D.P. Kim W.B. Lokhande C.D. J. Phys. Chem. Solids 73 (2012) 18. http://dx.doi.org/10.1016/j.jpcs.2011.09.005

  • [25] Gujar T.P. Shinde V.R. Lokhande C.D. Han S.H. J. Power Sources 161 (2006) 1479. http://dx.doi.org/10.1016/j.jpowsour.2006.05.036

  • [26] Bi R.R. Wu X.L. Cao F.F. Jiang L.Y. Guo Y.G. Wan L.J. J. Phys. Chem. 114 (2010) 2448.

  • [27] Li J. Liu E.H. Li W. Meng X.Y. Tan S.T. J. Alloy. Compd. 478 (2009) 371. http://dx.doi.org/10.1016/j.jallcom.2008.11.024

  • [28] Simon P. Gogotsi Y. Nat. Mater. 7 (2008) 845. http://dx.doi.org/10.1038/nmat2297

  • [29] Qu D.Y. J. Power Sources 102 (2001) 270. http://dx.doi.org/10.1016/S0378-7753(01)00810-2

  • [30] Wu M.S. Lee J.T. Wang Y.Y. Wan C.C. J. Phys. Chem. 108 (2004) 16331. http://dx.doi.org/10.1021/jp0404955

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 484 331 4
PDF Downloads 319 242 2