Low-temperature synthesis of zeolite from perlite waste — Part I: review of methods and phase compositions of resulting products

Open access

Abstract

In this paper a review of the recent studies on the synthesis of zeolites from expanded perlite under hydrothermal conditions is presented. Attention is paid to possible outcomes of synthesis from low cost glass material, such as perlite. The study also investigates the phase composition of zeolitic materials obtained by modification of by-product derived from an expanded perlite production process. The synthesis was made using the hydrothermal method with sodium hydroxide under autogenous pressure at a temperature below 100 °C for 1 to 72 h. It was possible to obtain a zeolitic material at a temperature as low as 60 °C using 4.0 M NaOH. The X-ray diffraction pattern showed the biggest peak intensity of zeolite X with 4.0 M NaOH at the temperature of 70 °C. During synthesis at higher temperature zeolite Na-P1 (with 3.0 M NaOH at 90 °C) and hydroxysodalite (with 5.0 M NaOH at 90 °C) were obtained.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Breck D.W. Zeolite Molecular Sieves John Wiley & Sons New York — London — Sydney — Toronto 1974.

  • [2] Colella C. Natural zeolites in: Čejka J. Bekkum H. (Eds.) Zeolites and ordered mesoporous materials: Progress and prospects Studies in Surface Science and Catalysis 157 Elsevier 2005 p. 13. http://dx.doi.org/10.1016/S0167-2991(05)80004-7

  • [3] Gottardi G. Galli E. (Eds.) Natural Zeolites Mineral and Rocks 18 Springer-Verlag Berlin Heidelberg 1985.

  • [4] Barrer R.M. White E.A.D. J. Chem. Soc. (Resumed) (1952) 1561.

  • [5] Zhdanov S.P. Khvoshchev S.S. Feoktistova N.N. Synthetic Zeolites Gordon and Breach Science 1990 p. 1.

  • [6] Williams C.D. Zeolites in: King R.B. Encyclopedia of Inorganic Chemistry JohnWiley & Sons Athens USA 1994 p. 4363.

  • [7] Georgiev D. Bogdanov B. Angelova K. Markovska I. Hristov Y. Synthetic zeolites — structure classification current trends in zeolite synthesis. Review International Science Conference 4–5.06.2009 Stara Zagora Bulgaria.

  • [8] www.perlite.info.

  • [9] www.schundler.com.

  • [10] Noh J.W. Boles J.R. Clay. Clay. Miner. 37 (1989) 47. http://dx.doi.org/10.1346/CCMN.1989.0370106

  • [11] Khodabandeh S. Davis M.E. Micropor. Mater. 9 (1997) 161. http://dx.doi.org/10.1016/S0927-6513(96)00100-9

  • [12] Gonthier S. Gora L. Güray I. Thompson R.W. Zeolites 13 (1993) 414. http://dx.doi.org/10.1016/0144-2449(93)90113-H

  • [13] Barth-wirsching U. Höller H. Klammer D. Konrad B. Miner. Petrol. 48 (1993) 275. http://dx.doi.org/10.1007/BF01163104

  • [14] Dyer A. Tangkawanit S. Rangsriwatananon K. Micropor. Mesopor. Mat. 75 (2004) 273. http://dx.doi.org/10.1016/j.micromeso.2004.07.007

  • [15] Kongkachuichay P. Lohsoontorn P. Science Asia 32 (2006) 13. http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32.013

  • [16] Tangkawanit S. Rangsriwatananon K. Suranaree J. Sci. Technol. 12/1 (2005) 61.

  • [17] Gualtieri A.F. Phys. Chem. Miner. 28 (2001) 719. http://dx.doi.org/10.1007/s002690100197

  • [18] Christidis G.E. Phapaliars I. Kontopoulos A. Appl. Clay Sci. 15 (1999) 305. http://dx.doi.org/10.1016/S0169-1317(99)00007-1

  • [19] Tangkawanit S. Synthesis of zeolites from perlite and study of their ion exchange properties Suranaree University of Technology 2004.

  • [20] Rujiwatra A. Mater. Lett. 58 (2004) 2012. http://dx.doi.org/10.1016/j.matlet.2003.12.015

  • [21] Christidis G.E. Papantoni H. Open Mineral. J. 2 (2008) 1. http://dx.doi.org/10.2174/18744567000802010001

  • [22] Phosawat W. Chareonpanich M. Sudasna-naayudthya P. Production of Zeolite Y from perlite online: http://kucon.lib.ku.ac.th/.

  • [23] Christidis G.E. Galani K. Markopoulos T. Synthesis of high added value zeolites from perlite and expanded perlite waste materials in: Scott P.W. Bristow C.M. (Eds.) Industrial Minerals and Extractive Industry Geology The Geological Society Publishing House UK 2002 p. 345.

  • [24] Psycharis V. Perdikatsis V. Christidis G. Crystal structure and Rietveld refinement of zeolite A synthesized from fine-grained perlite waste materials Bulletin of the Geological Society of Greece 36 — Proceedings of the 10th International Congress Thessaloniki April 2004 p. 121.

  • [25] Burriesci N. Crisafulli M.L. Saija L.M. Mater. Lett. 2/1 (1983) 74. http://dx.doi.org/10.1016/0167-577X(83)90038-1

  • [26] Kawano M. Tomita K. Clay. Clay Miner. 45/3 (1997) 365. http://dx.doi.org/10.1346/CCMN.1997.0450307

  • [27] Hawkins D.P. Clay. Clay Miner. 29/5 (1981) 331. http://dx.doi.org/10.1346/CCMN.1981.0290503

  • [28] Burriesci N. Crisafulli M.L. Giordano N. Bart J.C.J. Polizzotti G. Zeolites 4/4 (1984) 384. http://dx.doi.org/10.1016/0144-2449(84)90016-2

  • [29] Moirou A. Vaxevanidou A. Christidis G.E. Paspaliaris I. Clay. Clay Miner. 48/5 (2000) 563. http://dx.doi.org/10.1346/CCMN.2000.0480509

  • [30] Tangkawanit S. Rangsriwatananon K. Dyer A. Micropor. Mesopor. Mat. 79 (2005) 171. http://dx.doi.org/10.1016/j.micromeso.2004.10.040

  • [31] Faghihian H. Kamali M. Int. J. Environ. Pollut. 19/6 (2003) 557.

  • [32] Ciciszwili G.W. Andronikaszwili T.G. Kirow G.N. Flizowa L.D. Zeolity naturalne (in Polish) WNT Warszawa 1990.

  • [33] Wirsching U. Clay. Clay Miner. 29 (1981) 171. http://dx.doi.org/10.1346/CCMN.1981.0290302

  • [34] Khodabandeh S. Davis M.E. Chem. Commun. (1996) 1205.

  • [35] Dwyer J. Millward D. O’MALLEY P.J. Araya A. Corma A. Fornes V. Martinez A. J. Chem. Soc. Faraday Trans. 86/6 (1990) 1001. http://dx.doi.org/10.1039/ft9908601001

  • [36] Novembre D. di Sabatino B. Gimeno D. Pace C. Clay Miner. 46 (2011) 339. http://dx.doi.org/10.1180/claymin.2011.046.3.339

  • [37] Fernández-Jiménez A. Palomo A. Micropor. Mesopor. Mat. 86 (2005) 207. http://dx.doi.org/10.1016/j.micromeso.2005.05.057

  • [38] Cundy C.S. Cox P.A. Micropor. Mesopor. Mat. 82 (2005) 1. http://dx.doi.org/10.1016/j.micromeso.2005.02.016

  • [39] Mozgawa W. J. Mol. Struct. 596 (2001) 129. http://dx.doi.org/10.1016/S0022-2860(01)00741-4

  • [40] Mcmillan P. Piriou B. Navrotsky A. Geochim. Cosmochim. Ac. 46 (1982) 2021. http://dx.doi.org/10.1016/0016-7037(82)90182-X

  • [41] Wilson S.T. Templating in molecular sieve synthesis in: Robson H. (ed.) Verified syntheses of zeolitic materials Elsevier Amsterdam — London — New York — Oxford — Paris — Shannon — Tokyo 2001 p. 27. http://dx.doi.org/10.1016/B978-044450703-7/50102-2

  • [42] Querol X. Moreno N. Umaña J.C. Alastuey A. Hernández E. López-Soler A. Plana F. Int. J. Coal Geol. 50 (2002) 413. http://dx.doi.org/10.1016/S0166-5162(02)00124-6

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 160 3
PDF Downloads 160 129 0