Parametric optimization of NiFe2O4 nanoparticles synthesized by mechanical alloying

Open access

Abstract

In this study, the Taguchi robust design method is used for optimizing ball milling parameters including milling time, rotation speed and ball to powder weight ratio in the planetary ball milling of nanostructured nickel ferrite powder. In fact, the current work deals with NiFe2O4 nanoparticles mechanochemically synthesized from NiO and Fe2O3 powders. The Taguchi robust design technique of system optimization with the L9 orthogonal array is performed to verify the best experimental levels and contribution percentages (% ρ) of each parameter. Particle size measurement using SEM gives the average particle size value in the range of 59–67 nm. X-ray diffraction using Cu Kα radiation is also carried out to identify the formation of NiFe2O4 single phase. The XRD results suggest that NiFe2O4 with a crystallite size of about 12 nm is present in 30 h activated specimens. Furthermore, based on the results of the Taguchi approach the greatest effect on particle size (42.10 %) is found to be due to rotation speed followed by milling time (37.08 %) while ball to powder weight ratio exhibits the least influence.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Zhang J. Shi J. Gong M. J. Solid State Chem. 182(8) (2009) 2135. http://dx.doi.org/10.1016/j.jssc.2009.05.032

  • [2] Safarik I. Safarikova M. Nanostruct. Mater. Springer Vienna (2002) 1. http://dx.doi.org/10.1007/978-3-7091-6740-3_1

  • [3] Pileni M.P. Nat. Mater. 2 (2003) 145. http://dx.doi.org/10.1038/nmat817

  • [4] Sun J. Zhou S. Hou P. Yang Y. Weng J. Li X. Li M. J. Biomed. Mater. Res. A 80A (2007) 333. http://dx.doi.org/10.1002/jbm.a.30909

  • [5] Salavati-Niasari M. Davar F. Mahmoudi T. Polyhedron 28 (2009) 1455. http://dx.doi.org/10.1016/j.poly.2009.03.020

  • [6] Mathew D.S. Juang R.S. Chem. Eng. J. 129 (2007) 51. http://dx.doi.org/10.1016/j.cej.2006.11.001

  • [7] Kodama R.H. Berkowitz A.E. Mcniff E. Foner J. Foner S. Phys. Rev. Lett. 77 (1996) 394. http://dx.doi.org/10.1103/PhysRevLett.77.394

  • [8] Srivastava M. Ojha A.K. Chaubey S. Materny A. J. Alloy. Compd. 481 (2009) 515. http://dx.doi.org/10.1016/j.jallcom.2009.03.027

  • [9] Maensiri S. Masingboon C. Boonchom B. Supapan S. Scripta Mater. 56 (2007) 797. http://dx.doi.org/10.1016/j.scriptamat.2006.09.033

  • [10] Xu Q. Wei Y. Liu Y. Ji X. Yang L. Gu M. Solid State Sci. 11 (2009) 472. http://dx.doi.org/10.1016/j.solidstatesciences.2008.07.004

  • [11] Arulmurugan R. Vaidyanathan G. Sendhilnathan S. Jeyadevan B. J. Magn. Magn. Mater. 298 (2006) 83. http://dx.doi.org/10.1016/j.jmmm.2005.03.002

  • [12] Muthuselvam I.P. Bhowmik R.N. Solid State Sci. 11 (2009) 719. http://dx.doi.org/10.1016/j.solidstatesciences.2008.10.012

  • [13] Suryanarayana C. Prog. Mater. Sci.+ 46 (2001) 1. http://dx.doi.org/10.1016/S0079-6425(99)00010-9

  • [14] Maurice D.R. Courtney T.H. Metall. Mater. Trans. A 21 (1990) 289. http://dx.doi.org/10.1007/BF02782409

  • [15] Maurice D.R. Courtney T.H. Metall. Mater. Trans. A 26 (1995) 2431. http://dx.doi.org/10.1007/BF02671257

  • [16] Cook T.M. Courtney T.H. Metall. Mater. Trans. A 26 (1995) 2389. http://dx.doi.org/10.1007/BF02671252

  • [17] Abdellaoui M. Gaffet E. J. Alloy. Compd. 209 (1994) 351. http://dx.doi.org/10.1016/0925-8388(94)91124-X

  • [18] Garcia-diaz A. Philips D.T. Principles of experimental design and analysis Chapman and Hall London 1995.

  • [19] Montgomery D.C. Design and analysis of experiments 4th ed. John Wiley and Sons New York 1997.

  • [20] Klug H.P. Alexander L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials 2nd ed. John Wiley and Sons New York 1974.

  • [21] Monshi A. Foroughi M.R. Monshi M.R. World J. Nano Sci. Eng. 2 (2012) 154. http://dx.doi.org/10.4236/wjnse.2012.23020

  • [22] Gheisari Kh. Javadpour S. Oh J.T. Ghaffari M. J. Alloy. Compd. 472 (2009) 416. http://dx.doi.org/10.1016/j.jallcom.2008.04.074

  • [23] Cullity B.D. Elements of X-ray Diffraction Addison Wesley Pub. Co. Inc. 1956 42.

  • [24] Qi W.H. Wang M.P. Mater. Chem. Phys. 88 (2004) 280. http://dx.doi.org/10.1016/j.matchemphys.2004.04.026

  • [25] Roy R.K. A Primer on the Taguchi Method 2nd ed. Society of Manufacturing Engineers 2010.

  • [26] Ross P.J. Taguchi G. Techniques for Quality Engineering McGraw-Hill New York 1988.

  • [27] Paiva-Santos C.O. Gouveia H. Las W.C. Varela J.A. Mater. Struct. 6 (1999) 111.

  • [28] Ross P.J. Taguchi Techniques for Quality Engineering 2nd ed. McGraw-Hill Singapore 1996.

  • [29] Bendell A. Disney J. Pridmore W.A. Taguchi Methods: Applications in World Industry IFS Publications UK 1989.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 90 5
PDF Downloads 83 44 14