Cite

Two composites consisting of γ-Fe2O3 (maghemite) nanoparticles covered by two different oxygen-based free radicals derived from a 4-(methylamino)phenol sulphate and 8-hydroxy-1,3,6-trisulfonic trisodium salt acid were prepared and investigated by the magnetic resonance method in the 4–300 K range. Both composites displayed broad and very intense ferromagnetic resonance (FMR) lines originating from γ-Fe2O3 agglomerated nanoparticles. The FMR spectrum was fitted satisfactorily at each temperature by two Landau-Lifshitz functions reflecting the existence of magnetic anisotropy in the investigated system. The temperature dependence of the obtained FMR parameters (resonance field, linewidth, integrated intensity) was studied and the results were interpreted in terms of magnetic interactions between free radicals and nanoparticle agglomerates. A comparison with previously studied similar systems containing maghemite nanoparticles was made and conclusions about the role of free radicals were drawn.

eISSN:
2083-124X
ISSN:
2083-1331
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties