Phase, microstructure and dielectric properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics prepared by sol-gel technique

Open access

Abstract

0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics were fabricated by sol-gel technique. The XRD results revealed the formation of a single phase perovskite structured Bi0.5Na0.5TiO3-BaTiO3 at 600 °C. The SEM images showed dense microstructure and the optimum density of the ceramics sintered at 1100 °C was 5.2 g/cm3. The saturation polarization (Ps) was found to be increased with increasing temperature while the remnant polarization (Pr) was found to be increased gradually and then decreased abruptly near 85 °C, which could be attributed to the phase transformation. The coercive electric field (Ec) was found to be decreased gradually with increasing temperature. The maximum value of dielectric constant (ɛ r) at room temperature was 800 and dielectric loss at 1 MHz was 0.07.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Smolenskii G. A. Isupov V. A. Agranovskaya A. I. Krainik N. N. Sov. Phys.-Solid State (Engl. Transl.) 2(11) (1961) 2651.

  • [2] Hagiyev M. S. Ismaizade I. H. Abiyev A. K. Ferroelectrics 56 (1984) 215. http://dx.doi.org/10.1080/00150198408221371

  • [3] Suchanicz J. Roleder K. Kania A. Handerek J. Ferroelectrics 77 (1988) 107. http://dx.doi.org/10.1080/00150198808223232

  • [4] Zvirgzds J. V. Kapostins P. P. Zvirgzde J. V. Kruzina T. V. Ferroelectrics 40 (1982) 75. http://dx.doi.org/10.1080/00150198208210600

  • [5] Wang X. X. Tang X. G. Chan H. L. W. Choy C. L. J. Appl. Phys. (A) 80 (2005) 333. http://dx.doi.org/10.1007/s00339-003-2210-9

  • [6] Takenaka T. Maruyama K. I. Sakata K. Jpn. J. Appl. Phys. 30(9B) (1991) 2236. http://dx.doi.org/10.1143/JJAP.30.2236

  • [7] Sasaki A. Chiba T. Mamiya Y. Otsuki E. Jpn. J. Appl. Phys. 38(9B) (1999) 5564. http://dx.doi.org/10.1143/JJAP.38.5564

  • [8] Sakata K. Takenaka T. Naitou Y. Ferroelectrics 131 (1992) 219. http://dx.doi.org/10.1080/00150199208223419

  • [9] Nagata H. Koizumi N. Takenaka T. Key Eng. Mater. 37 (1999) 169.

  • [10] Wang X. X. Chan H. L. W. Choy C. L. J. Am. Ceram. Soc. 86(10) (2003) 1809. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03562.x

  • [11] Nagata H. Yoshida M. Makiuchi Y. Takenaka T. J. Appl. Phys. 42(12) (2003) 7401.

  • [12] Moulson A. J. Herbert J. M. Electroceramics Chapman and Hall London (1990) 71.

  • [13] Zhang S. T. Kounga A B. Aulbach E. Deng Y. J. Am. Ceram. Soc. 91[12] (2008) 3950. http://dx.doi.org/10.1111/j.1551-2916.2008.02778.x

  • [14] Bai Y. Zheng G. P. Shi S. Q. Materials Research Bulletin 46 (2011) 1866. http://dx.doi.org/10.1016/j.materresbull.2011.07.038

  • [15] Cernea M. Andronescu A. Radu R. Fochi F. Galassi C. J. Allo. And Comp. 490 (2010) 690. http://dx.doi.org/10.1016/j.jallcom.2009.10.140

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 46 1
PDF Downloads 80 55 0