Structural and magnetic properties of cobalt ferrites synthesized using sol-gel techniques

Open access

Abstract

Cobalt ferrite (CoFe2O4) was synthesized using sol-gel techniques from cobalt nitrate: iron nitrate: polyvinyl alcohol (PVA) gel in a ratio of 1:2:12. Variations in the amount of PVA in water (5 %, 10 % and 15 %) influenced the crystallite size and phases of the ferrite products, which in turn controlled their magnetic properties. X-ray diffraction studies indicated single phase CoFe2O4 with larger crystallite size and with the hysteresis loops displaying an increase in both coercive field and squareness as the PVA content was increased. Differential scanning calorimetry (DSC) showed that desorption of water and combustion of excess gel were clearly observed in CoFe2O4 prepared from 10 % and 15 % PVA in water. In the case of 5 % PVA in water, two other ratios of cobalt nitrate: iron nitrate: PVA solution were also tested and it was found that the 1:2:10 ratio led to the smallest coercive field and squareness.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Jiles D. Introduction to Magnetism and Magnetic Materials Chapman & Hall London 1991. http://dx.doi.org/10.1007/978-1-4615-3868-4

  • [2] Smit J. Wijn H.P.J. Ferrites Wiley London 1959.

  • [3] Cabañas A. Poliakoff M. J. Mater. Chem. 11 (2001) 1408. http://dx.doi.org/10.1039/b009428p

  • [4] Caltun O. Dumitru I. Feder M. Lupu N. Chiriac H. J. Magn. Magn. Mater. 320 (2008) e869. http://dx.doi.org/10.1016/j.jmmm.2008.04.067

  • [5] Fu W. Liu S. Fan W. Yang H. Pang X. Xu J. Zou G. J. Magn. Magn. Mater. 316 (2007) 54. http://dx.doi.org/10.1016/j.jmmm.2007.03.201

  • [6] Wang J. Deng T. Lin Y. Yang C. Zhan W. J. Alloys Compd. 450 (2008) 532. http://dx.doi.org/10.1016/j.jallcom.2007.02.099

  • [7] Yáñez-Vilar S. Sánchez-Andújar M. Gómez-Aguirre C. Mira J. Señarísrodríguez M.A. Castro-garcía S. J. Solid State Chem. 182 (2009) 2685. http://dx.doi.org/10.1016/j.jssc.2009.07.028

  • [8] Mathew D.S. Juang R.-S. Chem. Eng. J. 129 (2007) 51. http://dx.doi.org/10.1016/j.cej.2006.11.001

  • [9] Köseoğlu Y. Baykal A. Gözüak F. Kavas H. Polyhedron 28 (2009) 2887. http://dx.doi.org/10.1016/j.poly.2009.06.061

  • [10] Gul I.H. Maqsood A. J. Alloys Compd. 465 (2008) 227. http://dx.doi.org/10.1016/j.jallcom.2007.11.006

  • [11] Gopalan E.V. Joy P.A. Al-omari I.A. Kumar D.S. Yoshida Y. Anantharaman M.R. J. Alloys Compd. 485 (2009) 711. http://dx.doi.org/10.1016/j.jallcom.2009.06.033

  • [12] Liu F. Ren T. Yang C. Liu L. Yu J. J. Wuhan Univ. Technol. 22 (2007) 506. http://dx.doi.org/10.1007/s11595-006-3506-3

  • [13] Plocek J. Hutlová A. NižňanskÝ D. Buršík J. Rehspringer J.-L. Mička Z. Mater. Sci.-Poland 23 (2005) 697.

  • [14] García-Cerda L.A. Escareño-Castro M.U. Salazar-Zertuche M. J. Non-Cryst. Solids 353 (2007) 808. http://dx.doi.org/10.1016/j.jnoncrysol.2006.12.046

  • [15] Kornek R. NižňanskÝ D. Haimann K. Tylush W. Maruszewski K. Mater. Sci.-Poland 23 (2005) 87.

  • [16] Brinker C.J. Scherer G.W. Sol-Gel Science Academic Press London 1990.

  • [17] Klug H.P. Alexander L.E. X-ray Diffraction Procedure Wiley New York 1954.

  • [18] Ren P. Zhang J. Deng H. J. Wuhan Univ. Technol. 24 (2009) 927. http://dx.doi.org/10.1007/s11595-009-6927-y

  • [19] Vivekanandhan S. Venkateswarlu M. Satyanarayana N. Mater. Lett. 58 (2004) 2717. http://dx.doi.org/10.1016/j.matlet.2004.02.030

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 84 0
PDF Downloads 71 56 0