Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD

Open access


Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.

[1] IIJIMA S. Nature, 354,6348 (1991), 56–58.

[2] ANDREWS R. JACQUES D. QIAN D. and DICKEY E.C. Carbon, 39,11 (2001), 1681–1687.

[3] FRANK S. PONCHARAL P. WANG Z.L. DE HEER WA. Carbon Nanotube Quantum Resistors Science, 280,5370 (1998), 1744–1746.

[4] KONG J. ZHOU C. MORPURGO A. SOH HT. QUATE CF. MARCUS C. DAI H. Applied Physics A: Materials Science & Processing, 69,3 (1999), 305–308.

[5] LIU C. FAN Y.Y. LIU M. CONG H.T. CHENG H.M. DRESSELHAUS M.S. Science, 286,5442 (1999), 1127–1129.

[6] ANDREWS R. JACQUES D. and RAO A.M. Journal of Physical Chemistry B, 303,5 (1999), 467–474.

[7] WU H.Q. WEI X.W. SHAO M.W. GU J.S. QU M.Z. Journal of Materials Chemistry, 12,6 (2002), 1919–1921.

[8] DAI H. Surface Science, 500 (2002), 218–241.

[9] QIAN D. DICKEY E.C. ANDREWS R. and RANTELL T. Applied Physics Letters, 76,20 (2000), 2868–2870.

[10] WAGNER H.D. LOURIE O. FELDMAN Y. and TENNE R. Applied Physics Letters, 72,2 (1998),188–190.

[11] TANS S.J. VERSHUEREN A.R.M. and DEKKER C. Nature, 393 (1998), 49–52.

[12] CHOI H. C. KIM W. WANG D. DAI H. Journal of Physical Chemistry B, 106 (2002), 12361.

[13] HUANG W. WANG Y. LUO G. WEI F. Carbon, 41 (2003), 2585–2590.

[14] CHEUNG C. L. KURTZ A. PARK H. LIEBER C. M. Journal of Physical Chemistry B, 106 (2002), 2429.

[15] HYEON T. Chemical Communications, (2003), 927–934.

[16] KIM S. W. PARK J. JAMG Y. CHUNG Y. HWAN S. HYEON T. KIM Y. W. Nano Letters, 3 (2003), 1289–1291.

[17] YAMADA T. NAMAIL T. HATA K. FUTABA D. N. MIZUNO K. FAN J. YUDASAKA M. YUMURA M. IIJIMA S. Nature Nanotechnology, 1 (2006), 131–136. DOI:10.1038/nnano.2006.95.

[18] BANDOWS. HIRAOKA T. YUMURA T. HIRAHARA K. SHINOHARA H. IIJIMA S. Chemical Physics Letters, 384 (2004), 320–325.

[19] QIU H. X. SHI Z. J. GUAN L. H. YOU L. P. GAO M. ZHANG S. L. QIU J. S. GU Z. N. Carbon, 44 (2006), 516.

[20] QIU J. S. WANG Z. Y. ZHAO Z. B. WANG T. H. Fuel, 86 (2007), 282.

[21] YANG Q. H. TONG Y. LIU C. LI F. and CHENG H. M. Carbon, 43 (2005), 2013.

[22] YULIANG A. QINGYI H. Wang J. ZHAOHUI Z. ZHAO H. ZHANG G. Journal of Rare Earths, 28,5 (2010), 717.

[23] LYU S. C. LEE T. J. YANG C. W. LEE C. J. Chemical Communications, 12 (2003), 1404.

[24] PAULA Q. ALBERT G. N. DAVID G. UNTO T. JIANG H. TAKU T. KESTAS G. JOSE A. D. ESKO I. K. Carbon, 44 (2006), 1581.

[25] FLAUHAUT E. BACSA R. PEIGNEY A. LAURENT CH. Chemical Communications, (2003), 1442.

[26] SHELIMOV K.B. ESENALIEV R.O. and RINZLER A.G. Chemical Physics Letters, 2825 (1998), 429–434.

[27] SHIMODA H. FLEMING L. and HORTON K. Physica B, 323,1–4 (2002), 135–136.

[28] YUDASAKA M. ZHANG M. JABS C. IIJIMA S. Applied Physics A, 71,4 (2000), 449–451.

[29] SATO Y. OGAWA T. and MOTOMIYA K. Journal of Physical Chemistry B, 105,17 (2001), 3387–3392.

[30] CHIANG I.W. BRINSON B.E. and SMALLEY R.E. Journal of Physical Chemistry B, 105,6 (2001), 1157–1161.

[31] CHEN X.H. CHEN C.S. and CHEN Q. Materials Letters, 57 (2002), 734–738.

[32] LAMBERT J.M. AJAYAN P.M. BERNIER P. and PLANEIX J.M. Chemical Physics Letters, 226,3–4 (1994), 364–371.


[34] STEPLEWSKA A. BOROWIAK-PALEN E. KALENCZUK R.J. Chemical Papers, 64,2 (2010), 255–260.

[35] HURST K.E. DILLON A.C. KEENAN D.A. and LEHMAN J.H. Chemical Physics Letters, 433,4–6 (2007), 301–304.

Journal Information

IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794

CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 6
PDF Downloads 4 4 2