TiO2 supported on SiO2 photocatalysts prepared using ultrasonic-assisted sol-gel method

Open access

Abstract

TiO2-SiO2 (TiO2 supported on SiO2) photocatalysts were prepared using an ultrasonic-assisted sol-gel method. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence spectra (PL). Their photocatalytic activities were investigated by the method of methyl orange oxidation. It was found that the photocatalytic activity of TiO2-SiO2 was optimal when the molar ratio of hexadecyl trimethyl ammonium bromide to titanium butoxide was 1:10. The average crystallite size of TiO2-SiO2 was smaller than that prepared by the stirring method. Furthermore, for pure anatase phase samples, it was shown that the lower the photoluminescence intensity, the higher the photocatalytic activity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Yu J.C. Yu J. Zhang L. Ho W. J. Photochem. Photobio. A: Chem. 148 (2002) 263. http://dx.doi.org/10.1016/S1010-6030(02)00052-7

  • [2] Prasad K. Pinjari D.V. Pandit A.B. Mhaske S.T. Ultrason. Sonochem. 17 (2010) 697. http://dx.doi.org/10.1016/j.ultsonch.2010.01.005

  • [3] Neppolian B. Wang Q. Jung H. Choi H. Ultrason. Sonochem. 15 (2008) 649.

  • [4] Rengaraj S. Yeon J.W. Li X.Z. Jung Y.J. Kim W.H. Adv. Nanomater. Process. 124–126 (2007) 1745.

  • [5] Huo Y. J. Zhu Li J. Li G. Li H. J. Mol. Catal. A: Chem. 278 (2007) 237. http://dx.doi.org/10.1016/j.molcata.2007.07.054

  • [6] Mizukoshi Y. Makise Y. Shuto T. Hu J. Tominaga A. Shironita S. Tanabe S. Ultrason. Sonochem. 14 (2007) 387. http://dx.doi.org/10.1016/j.ultsonch.2006.08.001

  • [7] Yu Y. Yu J.C. Yu J.G. Kwok Y.C. Che Y.K. Zhao J.C. Ding L. Ge W.K. Wong P.K. Appl. Catal. A: Gen. 289 (2005) 186. http://dx.doi.org/10.1016/j.apcata.2005.04.057

  • [8] Liu H. Gao L. J. Am. Ceram. Soc. 89 (2006) 370. http://dx.doi.org/10.1111/j.1551-2916.2005.00686.x

  • [9] Paria S. Khilar K.C. Adv. Colloid Interfac. 110 (2004) 75. http://dx.doi.org/10.1016/j.cis.2004.03.001

  • [10] Fang Q. Meier M. Yu J.J. Wang Z.M. Zhang J.-Y. Wu J.X. Kenyon A. Hoffmann P. Boyd I. W. Mat. Sci. Eng. B 105 (2003) 209. http://dx.doi.org/10.1016/j.mseb.2003.08.047

  • [11] Kim J.-Y. Kim C.-S. Chang H.-K. Kim T.-O. Adv. Powder Technol. 21 (2010) 141. http://dx.doi.org/10.1016/j.apt.2009.12.008

  • [12] Wu S. Yin Y. Ma Z. Qin Y. Qi X. Liang Z. Chinese Journal of Molecular Catalysis 19 (2005) 167.

  • [13] Guo W. Yang Z. Wang X. Lin Z. Song G. Journal of The Chinese Ceramic Society 32 (2004) 1008.

  • [14] Suslick K.S. Price G.J. Annu. Rev. Mater. Sci. 29 (1999) 295. http://dx.doi.org/10.1146/annurev.matsci.29.1.295

  • [15] Liu G.Q. Jin Z.G. Liu X.X. Wang T. Liu Z.F. J. Sol-Gel Sci. Techn. 41 (2007) 49. http://dx.doi.org/10.1007/s10971-006-0122-9

  • [16] Li Z. Hou B. Xu Y. Wu D. Sun Y.H. J. Colloid Interfac. 288 (2005) 149. http://dx.doi.org/10.1016/j.jcis.2005.02.082

  • [17] Monticone S. Tufeu R. Kanaev A.V. Chem. Phys. Lett. 295 (1998) 237. http://dx.doi.org/10.1016/S0009-2614(98)00953-1

  • [18] Ishibashi K. Fujishima A. Watanabe T. Hashimoto K. Electroehem. Commun. 2 (2000) 207. http://dx.doi.org/10.1016/S1388-2481(00)00006-0

  • [19] Hou Y. Li D. Fu X. Liu P. Wang X. Chinese Journal of Fuzhou University (Natural Sciences Edition) 32 (2004) 747.

  • [20] Jung K.Y. Park S.B. Anpo M. J. Photochem. Photobio. A: Chem. 170 (2005) 247. http://dx.doi.org/10.1016/j.jphotochem.2004.09.003

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 138 83 3
PDF Downloads 39 20 3