Abstract

The aim of this study was to characterize the digestate from an activated sludge biogas reactor (IDARS) as an inoculum for enzymatic hydrolysis and biogas production from organic wastes. Aerobic and anaerobic bacteria are represented in IDARS with H’ index 3.1 and 2.5, respectively. IDARS stimulated the enzymatic hydrolysis of wood and leaves, preferably broadleaf tree species. The results demonstrated the potential of IDARS for improvement of the technological parameters for conversion of organic wastes into biogas.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] (2008 May 3). On the management of bio-waste in the European Union [Online]. Available: http://ec.europa.eu/environment/waste/compost/pdf/green_paper_annex.pdf

  • [2] R. Campuzano and S. González-Martínez “Characteristics of the organic fraction of municipal solid waste and methane production: A review” Waste Management vol. 54 pp. 3–12 Aug. 2016. https://doi.org/10.1016/j.wasman.2016.05.016

  • [3] Al Seadi T. Lukehurst C. “Quality management of digestate from biogas plants used as fertiliser” IEA Bioenergy Task 37 Energy from Biogas Report. 2012.

  • [4] N. H. Heo S. C. Park J. S. Lee H. Kang and D. H. Park “Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge” in Biotechnology for Fuels and Chemicals Totowa: Humana Press 2003 pp. 567–579.

  • [5] P. Zhang G. Zeng G. Zhang Y. Li B. Zhang and M. Fan “Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process” Fuel Processing Technology vol. 89 no. 4 pp. 485–489 Apr. 2008. https://doi.org/10.1016/j.fuproc.2007.11.013

  • [6] Rivière D. Desvignes V. Pelletier E. Chaussonnerie S. Guermazi S. Weissenbach J. et al. “Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge” ISME J. 3 700–714. https://doi.org/10.1038/ismej.2009.2

  • [7] M. C. Nelson M. Morrison and Z. Yu “A meta-analysis of the microbial diversity observed in anaerobic digesters” Bioresource Technology vol. 102 no. 4 pp. 3730–3739 Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.119

  • [8] D. Wilkins S. Rao X. Lu and P. K. H. Lee “Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion” Frontiers in Microbiology vol. 6 Oct. 2015. https://doi.org/10.3389/fmicb.2015.01114

  • [9] L. Regueiro P. Veiga M. Figueroa J. Alonso-Gutierrez A. J. M. Stams J. M. Lema and M. Carballa “Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters” Microbiological Research vol. 167 no. 10 pp. 581–589 Dec. 2012. https://doi.org/10.1016/j.micres.2012.06.002

  • [10] J. De Vrieze L. Raport B. Willems S. Verbrugge E. Volcke E. Meers L. T. Angenent and N. Boon “Inoculum selection influences the biochemical methane potential of agro-industrial substrates” Microbial Biotechnology vol. 8 no. 5 pp. 776–786 Mar. 2015. https://doi.org/10.1111/1751-7915.12268

  • [11] S. Tandy J. R. Healey M. A. Nason J. C. Williamson D. L. Jones and S. C. Thain “FT-IR as an alternative method for measuring chemical properties during composting” Bioresource Technology vol. 101 no. 14 pp. 5431–5436 Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.033

  • [12] T. Dlabaja and J. Malaťák “Optimization of anaerobic fermentation of kitchen waste” Research in Agricultural Engineering vol. 59 no. 1 pp. 1–8 2013.

  • [13] C. Li P. Champagne and B. C. Anderson “Evaluating and modeling biogas production from municipal fat oil and grease and synthetic kitchen waste in anaerobic co-digestions” Bioresource Technology vol. 102 no. 20 pp. 9471–9480 Oct. 2011. https://doi.org/10.1016/j.biortech.2011.07.103

  • [14] F. Alatriste-Mondragón P. Samar H. H. J. Cox B. K. Ahring and R. Iranpour “Anaerobic Codigestion of Municipal Farm and Industrial Organic Wastes: A Survey of Recent Literature” Water Environment Research vol. 78 no. 6 pp. 607–636 Jun. 2006. https://doi.org/10.2175/106143006x111673

  • [15] G. F. Parkin and W. F. Owen “Fundamentals of Anaerobic Digestion of Wastewater Sludges” Journal of Environmental Engineering vol. 112 no. 5 pp. 867–920 Oct. 1986. https://doi.org/10.1061/(asce)0733-9372(1986)112:5(867)

  • [16] F. Wang “Feasibility of Anaerobic Co-Digestion of Waste Activated Sludge and Corn Straw to Produce Methane-Batch Experiment” Asian Journal of Chemistry vol. 25 no. 15 pp. 8793–8796 2013. https://doi.org/10.14233/ajchem.2013.15673

  • [17] P. Sosnowski A. Wieczorek and S. Ledakowicz “Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes” Advances in Environmental Research vol. 7 no. 3 pp. 609–616 May 2003. https://doi.org/10.1016/s1093-0191(02)00049-7

  • [18] E. Iacovidou D.-G. Ohandja and N. Voulvoulis “Food waste co-digestion with sewage sludge – Realising its potential in the UK” Journal of Environmental Management vol. 112 pp. 267–274 Dec. 2012. https://doi.org/10.1016/j.jenvman.2012.07.029

  • [19] T. L. Hansen J. E. Schmidt I. Angelidaki E. Marca J. la C. Jansen H. Mosbæk and T. H. Christensen “Method for determination of methane potentials of solid organic waste” Waste Management vol. 24 no. 4 pp. 393–400 Jan. 2004. https://doi.org/10.1016/j.wasman.2003.09.009

  • [20] W. F. Owen D. C. Stuckey J. B. Healy L. Y. Young and P. L. McCarty “Bioassay for monitoring biochemical methane potential and anaerobic toxicity” Water Research vol. 13 no. 6 pp. 485–492 Jan. 1979. https://doi.org/10.1016/0043-1354(79)90043-5

  • [21] M. Grube J. G. Lin P. H. Lee and S. Kokorevicha “Evaluation of sewage sludge-based compost by FT-IR spectroscopy” Geoderma vol. 130 no. 3–4 pp. 324–333 Feb. 2006. https://doi.org/10.1016/j.geoderma.2005.02.005

  • [22] M. Grube I. Dimanta M. Gavare I. Strazdina J. Liepins T. Juhna and U. Kalnenieks “Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress” Biotechnology and Applied Biochemistry vol. 61 no. 2 pp. 111–117 Feb. 2014. https://doi.org/10.1002/bab.1128

  • [23] S. Tandy J. R. Healey M. A. Nason J. C. Williamson D. L. Jones and S. C. Thain “FT-IR as an alternative method for measuring chemical properties during composting” Bioresource Technology vol. 101 no. 14 pp. 5431–5436 Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.033

  • [24] D. L. Sills and J. M. Gossett “Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses” Biotechnology and Bioengineering vol. 109 no. 2 pp. 353–362 Sep. 2011. https://doi.org/10.1002/bit.23314

  • [25] G. L. Miller “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar” Analytical Chemistry vol. 31 no. 3 pp. 426–428 Mar. 1959. https://doi.org/10.1021/ac60147a030

  • [26] O. Muter “Complex natural amendments enhance cellulolytic activity of bacterial consortium” in VI International Conference of Industrial and Applied Microbiology – BioMicroWorld 2015 Barcelona Spain 2015 p. 493.

  • [27] E. M. Gabor E. J. Vries and D. B. Janssen “Efficient recovery of environmental DNA for expression cloning by indirect extraction methods” FEMS Microbiology Ecology vol. 44 no. 2 pp. 153–163 May 2003. https://doi.org/10.1016/s0168-6496(02)00462-2

  • [28] H. Urakawa J. Ali R. D. J. Ketover S. D. Talmage J. C. Garcia I. S. Campbell A. N. Loh and M. L. Parsons “Shifts of Bacterioplankton Metabolic Profiles along the Salinity Gradient in a Subtropical Estuary” ISRN Oceanography vol. 2013 pp. 1–12 2013. https://doi.org/10.5402/2013/410814

  • [29] M. Sala J. Pinhassi and J. Gasol “Estimation of bacterial use of dissolved organic nitrogen compounds in aquatic ecosystems using Biolog plates” Aquatic Microbial Ecology vol. 42 pp. 1–5 2006. https://doi.org/10.3354/ame042001

  • [30] O. Dirckx M. C. Triboulot-Trouy A. Merlin and X. Deglise “Modifications de la couleur du bois d'Abies grandis exposé à la lumière solaire” Annales des Sciences Forestières vol. 49 no. 5 pp. 425–447 1992. https://doi.org/10.1051/forest:19920501

  • [31] P. R. Waghmare A. A. Kadam G. D. Saratale and S. P. Govindwar “Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation” Bioresource Technology vol. 168 pp. 136–141 Sep. 2014. https://doi.org/10.1016/j.biortech.2014.02.099

  • [32] E. Smidt and K. Meissl “The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management” Waste Management vol. 27 no. 2 pp. 268–276 Jan. 2007. https://doi.org/10.1016/j.wasman.2006.01.016

  • [33] D. Athanassiadis and T. Räisänen. (2013 January 31). Basic chemical composition of the biomass components of pine spruce and birch [Online] Available: http://biofuelregion.se/wp-content/uploads/2017/01/1_2_IS_2013-01-31_Basic_chemical_composition.pdf

  • [34] R. Bodirlau I. Spiridon C. A. Teaca „Chemical investigation of wood tree species in temperate forest in east-northern Romania” BioResources vol. 2 no. 1 pp. 41–57 2007.

  • [35] R. C. Pettersen “The Chemical Composition of Wood” in The Chemistry of Solid Wood pp. 57–126 May 1984. https://doi.org/10.1021/ba-1984-0207.ch002

  • [36] The Composition of Oak and an Overview of its Influence on Maturation [Online] Available: http://homedistiller.org/oak.pdf

  • [37] A. R. Martin S. Gezahegn and S. C. Thomas “Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees” Canadian Journal of Forest Research vol. 45 no. 6 pp. 744–757 Jun. 2015. https://doi.org/10.1139/cjfr-2015-0024

  • [38] G. Yang and P. Jaakkola. (2011 December). “Wood chemistry and isolation of extractives from wood” [Online]. Available: http://biotuli-hanke.fi/files/download/Biotuli_YangjJaakkola2011.pdf

  • [39] G. F. Parkin and W. F. Owen “Fundamentals of Anaerobic Digestion of Wastewater Sludges” Journal of Environmental Engineering vol. 112 no. 5 pp. 867–920 Oct. 1986. https://doi.org/10.1061/(asce)0733-9372(1986)112:5(867)

  • [40] T. L. Hansen J. E. Schmidt I. Angelidaki E. Marca J. la C. Jansen H. Mosbæk and T. H. Christensen “Method for determination of methane potentials of solid organic waste” Waste Management vol. 24 no. 4 pp. 393–400 Jan. 2004. https://doi.org/10.1016/j.wasman.2003.09.009

  • [41] L. E. Sommers D. W. Nelson and K. J. Yost “Variable Nature of Chemical Composition of Sewage Sludges” Journal of Environmental Quality vol. 5 no. 3 pp. 303–306 1976. https://doi.org/10.2134/jeq1976.00472425000500030017x

  • [42] B. Satari J. Palhed K. Karimi M. Lundin M. J. Taherzadeh and A. Zamani “Process Optimization for Citrus Waste Biorefinery via Simultaneous Pectin Extraction and Pretreatment” BioResources vol. 12 no. 1 Jan. 2017. https://doi.org/10.15376/biores.12.1.1706-1722

  • [43] C. Yang W. Zhang R. Liu Q. Li B. Li S. Wang C. Song C. Qiao and A. Mulchandani “Phylogenetic Diversity and Metabolic Potential of Activated Sludge Microbial Communities in Full-Scale Wastewater Treatment Plants” Environmental Science & Technology vol. 45 no. 17 pp. 7408–7415 Sep. 2011. https://doi.org/10.1021/es2010545

  • [44] S. M. Paixão M. C. Sàágua R. Tenreiro and A. M. Anselmo “Assessing Microbial Communities for a Metabolic Profile Similar to Activated Sludge” Water Environment Research vol. 79 no. 5 pp. 536–546 May 2007. https://doi.org/10.2175/106143006x123148

  • [45] A. Gryta M. Frąc and K. Oszust “The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge” Applied Biochemistry and Biotechnology vol. 174 no. 4 pp. 1434–1443 Aug. 2014. https://doi.org/10.1007/s12010-014-1131-8

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 577 207 3
PDF Downloads 208 116 1