Abstract

The aim of this study was to characterize the digestate from an activated sludge biogas reactor (IDARS) as an inoculum for enzymatic hydrolysis and biogas production from organic wastes. Aerobic and anaerobic bacteria are represented in IDARS with H’ index 3.1 and 2.5, respectively. IDARS stimulated the enzymatic hydrolysis of wood and leaves, preferably broadleaf tree species. The results demonstrated the potential of IDARS for improvement of the technological parameters for conversion of organic wastes into biogas.

[1] (2008, May 3). On the management of bio-waste in the European Union [Online]. Available: http://ec.europa.eu/environment/waste/compost/pdf/green_paper_annex.pdf

[2] R. Campuzano and S. González-Martínez, “Characteristics of the organic fraction of municipal solid waste and methane production: A review,” Waste Management, vol. 54, pp. 3–12, Aug. 2016. https://doi.org/10.1016/j.wasman.2016.05.016

[3] Al Seadi, T., Lukehurst, C. “Quality management of digestate from biogas plants used as fertiliser” IEA Bioenergy Task 37 Energy from Biogas Report., 2012.

[4] N. H. Heo, S. C. Park, J. S. Lee, H. Kang, and D. H. Park, “Single-stage anaerobic codigestion for mixture wastes of simulated Korean food waste and waste activated sludge,” in Biotechnology for Fuels and Chemicals, Totowa: Humana Press, 2003, pp. 567–579.

[5] P. Zhang, G. Zeng, G. Zhang, Y. Li, B. Zhang, and M. Fan, “Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process,” Fuel Processing Technology, vol. 89, no. 4, pp. 485–489, Apr. 2008. https://doi.org/10.1016/j.fuproc.2007.11.013

[6] Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., et al. “Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge” ISME J. 3, 700–714. https://doi.org/10.1038/ismej.2009.2

[7] M. C. Nelson, M. Morrison, and Z. Yu, “A meta-analysis of the microbial diversity observed in anaerobic digesters,” Bioresource Technology, vol. 102, no. 4, pp. 3730–3739, Feb. 2011. https://doi.org/10.1016/j.biortech.2010.11.119

[8] D. Wilkins, S. Rao, X. Lu, and P. K. H. Lee, “Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion,” Frontiers in Microbiology, vol. 6, Oct. 2015. https://doi.org/10.3389/fmicb.2015.01114

[9] L. Regueiro, P. Veiga, M. Figueroa, J. Alonso-Gutierrez, A. J. M. Stams, J. M. Lema, and M. Carballa, “Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters,” Microbiological Research, vol. 167, no. 10, pp. 581–589, Dec. 2012. https://doi.org/10.1016/j.micres.2012.06.002

[10] J. De Vrieze, L. Raport, B. Willems, S. Verbrugge, E. Volcke, E. Meers, L. T. Angenent, and N. Boon, “Inoculum selection influences the biochemical methane potential of agro-industrial substrates,” Microbial Biotechnology, vol. 8, no. 5, pp. 776–786, Mar. 2015. https://doi.org/10.1111/1751-7915.12268

[11] S. Tandy, J. R. Healey, M. A. Nason, J. C. Williamson, D. L. Jones, and S. C. Thain, “FT-IR as an alternative method for measuring chemical properties during composting,” Bioresource Technology, vol. 101, no. 14, pp. 5431–5436, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.033

[12] T. Dlabaja and J. Malaťák, “Optimization of anaerobic fermentation of kitchen waste,” Research in Agricultural Engineering, vol. 59, no. 1, pp. 1–8, 2013.

[13] C. Li, P. Champagne, and B. C. Anderson, “Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions,” Bioresource Technology, vol. 102, no. 20, pp. 9471–9480, Oct. 2011. https://doi.org/10.1016/j.biortech.2011.07.103

[14] F. Alatriste-Mondragón, P. Samar, H. H. J. Cox, B. K. Ahring, and R. Iranpour, “Anaerobic Codigestion of Municipal, Farm, and Industrial Organic Wastes: A Survey of Recent Literature,” Water Environment Research, vol. 78, no. 6, pp. 607–636, Jun. 2006. https://doi.org/10.2175/106143006x111673

[15] G. F. Parkin and W. F. Owen, “Fundamentals of Anaerobic Digestion of Wastewater Sludges,” Journal of Environmental Engineering, vol. 112, no. 5, pp. 867–920, Oct. 1986. https://doi.org/10.1061/(asce)0733-9372(1986)112:5(867)

[16] F. Wang, “Feasibility of Anaerobic Co-Digestion of Waste Activated Sludge and Corn Straw to Produce Methane-Batch Experiment,” Asian Journal of Chemistry, vol. 25, no. 15, pp. 8793–8796, 2013. https://doi.org/10.14233/ajchem.2013.15673

[17] P. Sosnowski, A. Wieczorek, and S. Ledakowicz, “Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes,” Advances in Environmental Research, vol. 7, no. 3, pp. 609–616, May 2003. https://doi.org/10.1016/s1093-0191(02)00049-7

[18] E. Iacovidou, D.-G. Ohandja, and N. Voulvoulis, “Food waste co-digestion with sewage sludge – Realising its potential in the UK,” Journal of Environmental Management, vol. 112, pp. 267–274, Dec. 2012. https://doi.org/10.1016/j.jenvman.2012.07.029

[19] T. L. Hansen, J. E. Schmidt, I. Angelidaki, E. Marca, J. la C. Jansen, H. Mosbæk, and T. H. Christensen, “Method for determination of methane potentials of solid organic waste,” Waste Management, vol. 24, no. 4, pp. 393–400, Jan. 2004. https://doi.org/10.1016/j.wasman.2003.09.009

[20] W. F. Owen, D. C. Stuckey, J. B. Healy, L. Y. Young, and P. L. McCarty, “Bioassay for monitoring biochemical methane potential and anaerobic toxicity,” Water Research, vol. 13, no. 6, pp. 485–492, Jan. 1979. https://doi.org/10.1016/0043-1354(79)90043-5

[21] M. Grube, J. G. Lin, P. H. Lee, and S. Kokorevicha, “Evaluation of sewage sludge-based compost by FT-IR spectroscopy,” Geoderma, vol. 130, no. 3–4, pp. 324–333, Feb. 2006. https://doi.org/10.1016/j.geoderma.2005.02.005

[22] M. Grube, I. Dimanta, M. Gavare, I. Strazdina, J. Liepins, T. Juhna, and U. Kalnenieks, “Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress,” Biotechnology and Applied Biochemistry, vol. 61, no. 2, pp. 111–117, Feb. 2014. https://doi.org/10.1002/bab.1128

[23] S. Tandy, J. R. Healey, M. A. Nason, J. C. Williamson, D. L. Jones, and S. C. Thain, “FT-IR as an alternative method for measuring chemical properties during composting,” Bioresource Technology, vol. 101, no. 14, pp. 5431–5436, Jul. 2010. https://doi.org/10.1016/j.biortech.2010.02.033

[24] D. L. Sills and J. M. Gossett, “Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses,” Biotechnology and Bioengineering, vol. 109, no. 2, pp. 353–362, Sep. 2011. https://doi.org/10.1002/bit.23314

[25] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, Mar. 1959. https://doi.org/10.1021/ac60147a030

[26] O. Muter, “Complex natural amendments enhance cellulolytic activity of bacterial consortium,” in VI International Conference of Industrial and Applied Microbiology – BioMicroWorld 2015, Barcelona, Spain, 2015, p. 493.

[27] E. M. Gabor, E. J. Vries, and D. B. Janssen, “Efficient recovery of environmental DNA for expression cloning by indirect extraction methods,” FEMS Microbiology Ecology, vol. 44, no. 2, pp. 153–163, May 2003. https://doi.org/10.1016/s0168-6496(02)00462-2

[28] H. Urakawa, J. Ali, R. D. J. Ketover, S. D. Talmage, J. C. Garcia, I. S. Campbell, A. N. Loh, and M. L. Parsons, “Shifts of Bacterioplankton Metabolic Profiles along the Salinity Gradient in a Subtropical Estuary,” ISRN Oceanography, vol. 2013, pp. 1–12, 2013. https://doi.org/10.5402/2013/410814

[29] M. Sala, J. Pinhassi, and J. Gasol, “Estimation of bacterial use of dissolved organic nitrogen compounds in aquatic ecosystems using Biolog plates,” Aquatic Microbial Ecology, vol. 42, pp. 1–5, 2006. https://doi.org/10.3354/ame042001

[30] O. Dirckx, M. C. Triboulot-Trouy, A. Merlin and X. Deglise, “Modifications de la couleur du bois d'Abies grandis exposé à la lumière solaire,” Annales des Sciences Forestières, vol. 49, no. 5, pp. 425–447, 1992. https://doi.org/10.1051/forest:19920501

[31] P. R. Waghmare, A. A. Kadam, G. D. Saratale, and S. P. Govindwar, “Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation,” Bioresource Technology, vol. 168, pp. 136–141, Sep. 2014. https://doi.org/10.1016/j.biortech.2014.02.099

[32] E. Smidt and K. Meissl, “The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management,” Waste Management, vol. 27, no. 2, pp. 268–276, Jan. 2007. https://doi.org/10.1016/j.wasman.2006.01.016

[33] D. Athanassiadis and T. Räisänen. (2013, January 31). Basic chemical composition of the biomass components of pine, spruce and birch [Online] Available: http://biofuelregion.se/wp-content/uploads/2017/01/1_2_IS_2013-01-31_Basic_chemical_composition.pdf

[34] R. Bodirlau, I. Spiridon, C. A. Teaca, „Chemical investigation of wood tree species in temperate forest in east-northern Romania,” BioResources, vol. 2, no. 1, pp. 41–57, 2007.

[35] R. C. Pettersen, “The Chemical Composition of Wood,” in The Chemistry of Solid Wood, pp. 57–126, May 1984. https://doi.org/10.1021/ba-1984-0207.ch002

[36] The Composition of Oak and an Overview of its Influence on Maturation [Online] Available: http://homedistiller.org/oak.pdf

[37] A. R. Martin, S. Gezahegn, and S. C. Thomas, “Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees,” Canadian Journal of Forest Research, vol. 45, no. 6, pp. 744–757, Jun. 2015. https://doi.org/10.1139/cjfr-2015-0024

[38] G. Yang and P. Jaakkola. (2011, December). “Wood chemistry and isolation of extractives from wood” [Online]. Available: http://biotuli-hanke.fi/files/download/Biotuli_YangjJaakkola2011.pdf

[39] G. F. Parkin and W. F. Owen, “Fundamentals of Anaerobic Digestion of Wastewater Sludges,” Journal of Environmental Engineering, vol. 112, no. 5, pp. 867–920, Oct. 1986. https://doi.org/10.1061/(asce)0733-9372(1986)112:5(867)

[40] T. L. Hansen, J. E. Schmidt, I. Angelidaki, E. Marca, J. la C. Jansen, H. Mosbæk, and T. H. Christensen, “Method for determination of methane potentials of solid organic waste,” Waste Management, vol. 24, no. 4, pp. 393–400, Jan. 2004. https://doi.org/10.1016/j.wasman.2003.09.009

[41] L. E. Sommers, D. W. Nelson, and K. J. Yost, “Variable Nature of Chemical Composition of Sewage Sludges,” Journal of Environmental Quality, vol. 5, no. 3, pp. 303–306, 1976. https://doi.org/10.2134/jeq1976.00472425000500030017x

[42] B. Satari, J. Palhed, K. Karimi, M. Lundin, M. J. Taherzadeh, and A. Zamani, “Process Optimization for Citrus Waste Biorefinery via Simultaneous Pectin Extraction and Pretreatment,” BioResources, vol. 12, no. 1, Jan. 2017. https://doi.org/10.15376/biores.12.1.1706-1722

[43] C. Yang, W. Zhang, R. Liu, Q. Li, B. Li, S. Wang, C. Song, C. Qiao, and A. Mulchandani, “Phylogenetic Diversity and Metabolic Potential of Activated Sludge Microbial Communities in Full-Scale Wastewater Treatment Plants,” Environmental Science & Technology, vol. 45, no. 17, pp. 7408–7415, Sep. 2011. https://doi.org/10.1021/es2010545

[44] S. M. Paixão, M. C. Sàágua, R. Tenreiro, and A. M. Anselmo, “Assessing Microbial Communities for a Metabolic Profile Similar to Activated Sludge,” Water Environment Research, vol. 79, no. 5, pp. 536–546, May 2007. https://doi.org/10.2175/106143006x123148

[45] A. Gryta, M. Frąc, and K. Oszust, “The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge,” Applied Biochemistry and Biotechnology, vol. 174, no. 4, pp. 1434–1443, Aug. 2014. https://doi.org/10.1007/s12010-014-1131-8

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 326 20
PDF Downloads 177 132 13