Synthesis, Characterization and Synthetic Applications of Fly-ash:H3PO4 Nanocatalyst

Abstract

The solid acidic nanocatalyst fly-ash:H3PO4 was prepared and characterized by FT-IR, SEM, EDS and TEM analysis. This catalyst was utilized for aldol condensation, coupling and cyclization reaction. The effect of catalytic activity of this fly-ash:H3PO4 nanocatalyst was studied with the obtained yield of products under solvent-free conditions. In this synthetic reaction the obtained yields were more than 95 %.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V. K. Sharma, T. Nevěčná, and R. Zbořil, “Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity,” The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, Aug. 2006. https://doi.org/10.1021/jp063826h

  • [2] W. Knoll and W. Fritzsche, “Editorial: Nanoparticles for biotechnology applications,” IEE Proceedings - Nanobiotechnology, vol. 152, no. 1, p. 1, 2005. https://doi.org/10.1049/ip-nbt:20049003

  • [3] M. Sivasankar and B. Pramod Kumar, “Role of nanoparticles in drug delivery system”, International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 1, no. 2, pp. 41–66, 2010.

  • [4] K. Uekama, “Design and Evaluation of Cyclodextrin-Based Drug Formulation,” Chemical & Pharmaceutical Bulletin, vol. 52, no. 8, pp. 900–915, 2004. https://doi.org/10.1248/cpb.52.900

  • [5] H. Du and F. Yu, “Nanoparticle formation in the exhaust of vehicles running on ultra-low sulfur fuel,” Atmospheric Chemistry and Physics, vol. 8, no. 16, pp. 4729–4739, Aug. 2008. https://doi.org/10.5194/acp-8-4729-2008

  • [6] P. Joodatnia, P. Kumar, and A. Robins, “The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates,” Atmospheric Environment, vol. 65, pp. 40–51, Feb. 2013. https://doi.org/10.1016/j.atmosenv.2012.10.025

  • [7] J. R. Groza, “Nanosintering,” Nanostructured Materials, vol. 12, no. 5–8, pp. 987–992, Jan. 1999. https://doi.org/10.1016/S0965-9773(99)00284-6

  • [8] E. Joselevich, H. Dai, J. Liu, et al., “Carbon Nanotube Synthesis and Organization” in Carbon nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications”, 1st ed. Berlin, Germany: Springer, 2008, pp. 101–163.

  • [9] Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a ‘Magic’ Reagent?,” Journal of the American Chemical Society, vol. 133, no. 46, pp. 18931–18939, Nov. 2011. https://doi.org/10.1021/ja2080345

  • [10] P. F. Xu, A. M. Hung, H. Noh, and J. N. Cha, “Switchable Nanodumbbell Probes for Analyte Detection,” Small, vol. 9, no. 2, pp. 228–232, Oct. 2012. https://doi.org/10.1002/smll.201201721

  • [11] H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A Hybrid Plasmonic Nanostructure,” Nano Letters, vol. 6, no. 4, pp. 827–832, Apr. 2006. https://doi.org/10.1021/nl060209w

  • [12] R. H. Miwa, W. Orellana, and G. P. Srivastava, “Iron silicide wires patterned by Bi nanolines on the H/Si(001) surface: Spin density functional calculations,” Physical Review B, vol. 78, no. 11, Sep. 2008. https://doi.org/10.1103/PhysRevB.78.115310

  • [13] D. Spitzer, M. Comet, C. Baras, V. Pichot, and N. Piazzon, “Energetic nano-materials: Opportunities for enhanced performances,” Journal of Physics and Chemistry of Solids, vol. 71, no. 2, pp. 100–108, Feb. 2010. https://doi.org/10.1016/j.jpcs.2009.09.010

  • [14] D. R. Koenig, E. M. Weig, and J. P. Kotthaus, “Ultrasonically driven nanomechanical single-electron shuttle,” Nature Nanotechnology, vol. 3, no. 8, pp. 482–485, Jul. 2008. https://doi.org/10.1038/nnano.2008.178

  • [15] P. Moroz, N. Kholmicheva, B. Mellott, G. Liyanage, U. Rijal, E. Bastola, K. Huband, E. Khon, K. McBride, and M. Zamkov, “Suppressed Carrier Scattering in CdS-Encapsulated PbS Nanocrystal Films,” ACS Nano, vol. 7, no. 8, pp. 6964–6977, Aug. 2013. https://doi.org/10.1021/nn402844m

  • [16] C. Joachim and G. Rapenne, “Molecule Concept Nanocars: Chassis, Wheels, and Motors?,” ACS Nano, vol. 7, no. 1, pp. 11–14, Jan. 2013. https://doi.org/10.1021/nn3058246

  • [17] A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting Nanoparticles with Intertwined Plasmonic and Thermo-Hydrodynamical Forces,” Nano Letters, vol. 13, no. 9, pp. 4230–4235, Sep. 2013. https://doi.org/10.1021/nl401922p

  • [18] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size Dependence of Dielectric Constant in a Single Pencil-Like ZnO Nanowire,” Nano Letters, vol. 12, no. 4, pp. 1919–1922, Apr. 2012. https://doi.org/10.1021/nl204353t

  • [19] Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Scientific Reports, vol. 3, Mar. 2013. https://doi.org/10.1038/srep01536

  • [20] K. Bhattacharya, E. Hoffmann, R. F. P. Schins, J. Boertz, E.-M. Prantl, G. M. Alink, H. J. Byrne, T. A. J. Kuhlbusch, Q. Rahman, H. Wiggers, C. Schulz, and E. Dopp, “Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro,” Toxicological Sciences, vol. 126, no. 1, pp. 173–182, Jan. 2012. https://doi.org/10.1093/toxsci/kfs014

  • [21] H. Reza Taghiyari, H. Gholamiyan, and A. Karimi, “Effects of Heat-Treatment on Screw and Nail Withdrawal Resistance of Nanosilver-Impregnated and Untreated Solid Woods,” Current Nanoscience, vol. 8, no. 4, pp. 637–642, Jul. 2012. https://doi.org/10.2174/157341312801784357

  • [22] R. Fazaeli, H. Aliyan, M. Moghadam, and M. Masoudinia, “Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships,” Journal of Molecular Catalysis A: Chemical, vol. 374–375, pp. 46–52, Aug. 2013. https://doi.org/10.1016/j.molcata.2013.03.020

  • [23] T. Mitsui, D. Stein, Y.-R. Kim, D. Hoogerheide, and J. A. Golovchenko, “Nanoscale Volcanoes: Accretion of Matter at Ion-Sculpted Nanopores,” Physical Review Letters, vol. 96, no. 3, Jan. 2006. https://doi.org/10.1103/PhysRevLett.96.036102

  • [24] I. Grunwald, K. Rischka, S. M. Kast, T. Scheibel, and H. Bargel, “Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1894, pp. 1727–1747, Mar. 2009. https://doi.org/10.1098/rsta.2009.0012

  • [25] C. S. Ozkan, “Assembly at the Nanoscale: Towards Functional Nanostructured Materials (Invited),” Multifunctional Nanocomposites, 2006. https://doi.org/10.1115/MN2006-17078

  • [26] M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, and S. Hayami, “Graphene Oxide Nanosheet with High Proton Conductivity,” Journal of the American Chemical Society, vol. 135, no. 22, pp. 8097–8100, Jun. 2013. https://doi.org/10.1021/ja401060q

  • [27] J. C. Mierzwa, V. Arieta, M. Verlage, J. Carvalho, and C. D. Vecitis, “Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes,” Desalination, vol. 314, pp. 147–158, Apr. 2013.. https://doi.org/10.1016/j.desal.2013.01.011

  • [28] Z. P. Xu, G. S. Stevenson, C.-Q. Lu, G. Q. (Max) Lu, P. F. Bartlett, and P. P. Gray, “Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution,” Journal of the American Chemical Society, vol. 128, no. 1, pp. 36–37, Jan. 2006. https://doi.org/10.1021/ja056652a

  • [29] E. Leino, P. Mäki-Arvela, V. Eta, N. Kumar, F. Demoisson, A. Samikannu, A.-R. Leino, A. Shchukarev, D. Y. Murzin, and J.-P. Mikkola, “The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide,” Catalysis Today, vol. 210, pp. 47–54, Jul. 2013. https://doi.org/10.1016/j.cattod.2013.02.011

  • [30] B. M. Choudary, K. V. S. Ranganath, J. Yadav, and M. Lakshmi Kantam, “Synthesis of flavanones using nanocrystalline MgO,” Tetrahedron Letters, vol. 46, no. 8, pp. 1369–1371, Feb. 2005. https://doi.org/10.1016/j.tetlet.2004.12.078

  • [31] M. Ali, M. Idris, and M. Quayum, “Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye,” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 36, 2013. https://doi.org/10.1186/2193-8865-3-36

  • [32] S. Atghia and S. Beigbaghlou, “Nanocrystalline titania-based sulfonic acid (TiO2-Pr-SO3H) as a new, highly efficient, and recyclable solid acid catalyst for preparation of quinoxaline derivatives,” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 38, 2013. https://doi.org/10.1186/2193-8865-3-38

  • [33] F. Sadeghi, F. Khani, A. Azandaryani, Y. Mansouri, Z. Mehrabadi, and A. Nikjou, “Synthesis, characterization, and experimental investigation of surface activity of SERS substrates using neodymium oxide (Nd2O3),” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 40, 2013. https://doi.org/10.1186/2193-8865-3-40

  • [34] A. S. Nair, C. Subramaniam, M. J. Rosemary, R. T. Tom, V. R. R. Kumar, D. M. D. J. Singh, J. Cyriac, P. Jain, K. A. Kalesh, S. Bhattacharya, and T. Pradeep, “Nanoparticles-chemistry, new synthetic approaches, gas phase clustering and novel applications,” Pramana, vol. 65, no. 4, pp. 631–640, Oct. 2005. https://doi.org/10.1007/BF03010451

  • [35] J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, D. T. Hoang, S. Alayoglu, D. R. Butcher, F. (Feng) Tao, Z. Liu, and G. A. Somorjai, “Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems,” Physical Chemistry Chemical Physics, vol. 13, no. 7, pp. 2556–2562, 2011. https://doi.org/10.1039/C0CP01858A

  • [36] C. R. Raj, A. I. Abdelrahman, and T. Ohsaka, “Gold nanoparticle-assisted electroreduction of oxygen,” Electrochemistry Communications, vol. 7, no. 9, pp. 888–893, Sep. 2005. https://doi.org/10.1016/j.elecom.2005.06.005

  • [37] M. J. Gracia, J. M. Campelo, E. Losada, R. Luque, J. M. Marinas, and A. A. Romero, “Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles,” Organic & Biomolecular Chemistry, vol. 7, no. 23, pp. 4821–4824, 2009. https://doi.org/10.1039/B913695A

  • [38] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chemical Reviews, vol. 105, no. 4, pp. 1103–1170, Apr. 2005. https://doi.org/10.1021/cr0300789

  • [39] M. V. Sujitha and S. Kannan, “Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 102, pp. 15–23, Feb. 2013. https://doi.org/10.1016/j.saa.2012.09.042

  • [40] X.-H. Yang, J. Ling, J. Peng, Q.-E. Cao, L. Wang, Z.-T. Ding, and J. Xiong, “Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 106, pp. 224–230, Apr. 2013. https://doi.org/10.1016/j.saa.2012.12.097

  • [41] K. Thirumurthy and G. Thirunarayanan, “A facilely designed, highly efficient green synthetic strategy of a peony flower-like SO4 2− –SnO2-fly ash nano-catalyst for the three component synthesis of a serendipitous product with dimedone in water,” RSC Adv., vol. 5, no. 42, pp. 33595–33606, 2015. https://doi.org/10.1039/C5RA04006J

  • [42] K. Thirumurthy and G. Thirunarayanan, “A facile designed highly moderate craspedia flowerlike sulphated Bi2O3-fly ash catalyst: Green synthetic strategy for (6H-pyrido[3,2-b]carbazol-4-yl)aniline derivatives in water,” Arabian Journal of Chemistry, May 2015. https://doi.org/10.1016/j.arabjc.2015.04.015

  • [43] G. Thirunarayanan, P. Mayavel, and K. Thirumurthy, “Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 91, pp. 18–22, Jun. 2012. https://doi.org/10.1016/j.saa.2012.01.054

  • [44] K. Sathiyamoorthi, V. Mala, R. Suresh, S. P. Sakthinathan, D. Kamalakkannan, K. Ranganathan, R. Arulkumaran, R. Sundararajan, S. Vijayakumar, G. Vanangamudi, and G. Thirunarayanan, “Synthesis, Spectral Correlations and Antimicrobial Activities of some 2-Hydroxyphenyl-Styrylketone,” International Letters of Chemistry, Physics and Astronomy, vol. 12, pp. 102–119, Sep. 2013. https://doi.org/10.18052/www.scipress.com/ILCPA.12.102

  • [45] K. Suman, R. Kumari, M. Atulya, A. Jesil Mathew and K. R. Ethiraj, “Synthesis and biological evaluation of new acetylated pyrazoline analogues”, Pharmacologyonline, vol. 2, pp. 1411–1416, 2011.

  • [46] A. K. Singh, R. K. Prasad and C. S. Singh, “Synthesis, characterization and pharmacological evaluation of some novel 3-indole derivatives”, Der Pharma Chemica, vol. 5, no. 2, pp. 311–319, 2013.

  • [47] M. M. Hania, “Synthesis of Some Imines and Investigation of their Biological Activity,” E-Journal of Chemistry, vol. 6, no. 3, pp. 629–632, 2009. https://doi.org/10.1155/2009/104058

  • [48] R. Suresh, D. Kamalakkannan, K. Ranganathan, R. Arulkumaran, R. Sundararajan, S. P. Sakthinathan, S. Vijayakumar, K. Sathiyamoorthi, V. Mala, G. Vanangamudi, K. Thirumurthy, P. Mayavel, and G. Thirunarayanan, “Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 101, pp. 239–248, Jan. 2013. https://doi.org/10.1016/j.saa.2012.09.039

  • [49] J. W. Sadownik and D. Philp, “A Simple Synthetic Replicator Amplifies Itself from a Dynamic Reagent Pool,” Angewandte Chemie, vol. 120, no. 51, pp. 10113–10118, Dec. 2008. https://doi.org/10.1002/ange.200804223

  • [50] R. K. Sandhar, J. R. Sharma and M. R. Manrao, “Synthesis and fungitoxicity of C-phenyl substituted benzal-4-fluoroanilines,” Pesticide Research Journal, vol. 17, no. 2, pp. 9–11, 2005.

  • [51] S. S. Karki, “Synthesis and biological evaluation of some novel substituted N-benzylideneaniline derivatives,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 4, pp. 707–717, 2010.

  • [52] C. Catusse, R. Catusse, A. Gaset and J. P. Corrichon, “Synthesis and caracterization of benzylideneamines derivatized to aromatic aldehydes. RMN 1H et 13C”, Journal de la Société Chimique de Tunisie, vol. 2, pp. 11–14, 1985.

  • [53] D. Johnston, D. M. Smith, T. Shepherd, and D. Thompson, “o-Nitrobenzylidene compounds. Part 3. Formation of 4-arylamino-3-methoxycinnoline 1-oxides from N-o-nitrobenzylideneanilines, cyanide ion, methanol: the intermediacy of 2-aryl-3-cyano-2H-indazole 1-oxides,” Journal of the Chemical Society, Perkin Transactions 1, pp. 495–500, 1987. https://doi.org/10.1039/P19870000495

  • [54] N. Aggarwal, R. Kumar, P. Dureja, and D. S. Rawat, “Schiff Bases as Potential Fungicides and Nitrification Inhibitors,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8520–8525, Sep. 2009. https://doi.org/10.1021/jf902035w

  • [55] G. Thirunarayanan, P. Mayavel, K. Thirumurthy, S. Dineshkumar, R. Sasikala, P. Nisha and A. Nithyaranjani, “Eco-friendly synthesis and spectral correlations in some 1-phenyl-3-(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines”, European Chemical Bulletin, vol. 2, pp. 598–605, 2013.

OPEN ACCESS

Journal + Issues

Search