Synthesis, Characterization and Synthetic Applications of Fly-ash:H3PO4 Nanocatalyst


The solid acidic nanocatalyst fly-ash:H3PO4 was prepared and characterized by FT-IR, SEM, EDS and TEM analysis. This catalyst was utilized for aldol condensation, coupling and cyclization reaction. The effect of catalytic activity of this fly-ash:H3PO4 nanocatalyst was studied with the obtained yield of products under solvent-free conditions. In this synthetic reaction the obtained yields were more than 95 %.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V. K. Sharma, T. Nevěčná, and R. Zbořil, “Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity,” The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, Aug. 2006.

  • [2] W. Knoll and W. Fritzsche, “Editorial: Nanoparticles for biotechnology applications,” IEE Proceedings - Nanobiotechnology, vol. 152, no. 1, p. 1, 2005.

  • [3] M. Sivasankar and B. Pramod Kumar, “Role of nanoparticles in drug delivery system”, International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 1, no. 2, pp. 41–66, 2010.

  • [4] K. Uekama, “Design and Evaluation of Cyclodextrin-Based Drug Formulation,” Chemical & Pharmaceutical Bulletin, vol. 52, no. 8, pp. 900–915, 2004.

  • [5] H. Du and F. Yu, “Nanoparticle formation in the exhaust of vehicles running on ultra-low sulfur fuel,” Atmospheric Chemistry and Physics, vol. 8, no. 16, pp. 4729–4739, Aug. 2008.

  • [6] P. Joodatnia, P. Kumar, and A. Robins, “The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates,” Atmospheric Environment, vol. 65, pp. 40–51, Feb. 2013.

  • [7] J. R. Groza, “Nanosintering,” Nanostructured Materials, vol. 12, no. 5–8, pp. 987–992, Jan. 1999.

  • [8] E. Joselevich, H. Dai, J. Liu, et al., “Carbon Nanotube Synthesis and Organization” in Carbon nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications”, 1st ed. Berlin, Germany: Springer, 2008, pp. 101–163.

  • [9] Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, “A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a ‘Magic’ Reagent?,” Journal of the American Chemical Society, vol. 133, no. 46, pp. 18931–18939, Nov. 2011.

  • [10] P. F. Xu, A. M. Hung, H. Noh, and J. N. Cha, “Switchable Nanodumbbell Probes for Analyte Detection,” Small, vol. 9, no. 2, pp. 228–232, Oct. 2012.

  • [11] H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A Hybrid Plasmonic Nanostructure,” Nano Letters, vol. 6, no. 4, pp. 827–832, Apr. 2006.

  • [12] R. H. Miwa, W. Orellana, and G. P. Srivastava, “Iron silicide wires patterned by Bi nanolines on the H/Si(001) surface: Spin density functional calculations,” Physical Review B, vol. 78, no. 11, Sep. 2008.

  • [13] D. Spitzer, M. Comet, C. Baras, V. Pichot, and N. Piazzon, “Energetic nano-materials: Opportunities for enhanced performances,” Journal of Physics and Chemistry of Solids, vol. 71, no. 2, pp. 100–108, Feb. 2010.

  • [14] D. R. Koenig, E. M. Weig, and J. P. Kotthaus, “Ultrasonically driven nanomechanical single-electron shuttle,” Nature Nanotechnology, vol. 3, no. 8, pp. 482–485, Jul. 2008.

  • [15] P. Moroz, N. Kholmicheva, B. Mellott, G. Liyanage, U. Rijal, E. Bastola, K. Huband, E. Khon, K. McBride, and M. Zamkov, “Suppressed Carrier Scattering in CdS-Encapsulated PbS Nanocrystal Films,” ACS Nano, vol. 7, no. 8, pp. 6964–6977, Aug. 2013.

  • [16] C. Joachim and G. Rapenne, “Molecule Concept Nanocars: Chassis, Wheels, and Motors?,” ACS Nano, vol. 7, no. 1, pp. 11–14, Jan. 2013.

  • [17] A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting Nanoparticles with Intertwined Plasmonic and Thermo-Hydrodynamical Forces,” Nano Letters, vol. 13, no. 9, pp. 4230–4235, Sep. 2013.

  • [18] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size Dependence of Dielectric Constant in a Single Pencil-Like ZnO Nanowire,” Nano Letters, vol. 12, no. 4, pp. 1919–1922, Apr. 2012.

  • [19] Y. Zhou, C. Fuentes-Hernandez, T. M. Khan, J.-C. Liu, J. Hsu, J. W. Shim, A. Dindar, J. P. Youngblood, R. J. Moon, and B. Kippelen, “Recyclable organic solar cells on cellulose nanocrystal substrates,” Scientific Reports, vol. 3, Mar. 2013.

  • [20] K. Bhattacharya, E. Hoffmann, R. F. P. Schins, J. Boertz, E.-M. Prantl, G. M. Alink, H. J. Byrne, T. A. J. Kuhlbusch, Q. Rahman, H. Wiggers, C. Schulz, and E. Dopp, “Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro,” Toxicological Sciences, vol. 126, no. 1, pp. 173–182, Jan. 2012.

  • [21] H. Reza Taghiyari, H. Gholamiyan, and A. Karimi, “Effects of Heat-Treatment on Screw and Nail Withdrawal Resistance of Nanosilver-Impregnated and Untreated Solid Woods,” Current Nanoscience, vol. 8, no. 4, pp. 637–642, Jul. 2012.

  • [22] R. Fazaeli, H. Aliyan, M. Moghadam, and M. Masoudinia, “Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships,” Journal of Molecular Catalysis A: Chemical, vol. 374–375, pp. 46–52, Aug. 2013.

  • [23] T. Mitsui, D. Stein, Y.-R. Kim, D. Hoogerheide, and J. A. Golovchenko, “Nanoscale Volcanoes: Accretion of Matter at Ion-Sculpted Nanopores,” Physical Review Letters, vol. 96, no. 3, Jan. 2006.

  • [24] I. Grunwald, K. Rischka, S. M. Kast, T. Scheibel, and H. Bargel, “Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1894, pp. 1727–1747, Mar. 2009.

  • [25] C. S. Ozkan, “Assembly at the Nanoscale: Towards Functional Nanostructured Materials (Invited),” Multifunctional Nanocomposites, 2006.

  • [26] M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, and S. Hayami, “Graphene Oxide Nanosheet with High Proton Conductivity,” Journal of the American Chemical Society, vol. 135, no. 22, pp. 8097–8100, Jun. 2013.

  • [27] J. C. Mierzwa, V. Arieta, M. Verlage, J. Carvalho, and C. D. Vecitis, “Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes,” Desalination, vol. 314, pp. 147–158, Apr. 2013..

  • [28] Z. P. Xu, G. S. Stevenson, C.-Q. Lu, G. Q. (Max) Lu, P. F. Bartlett, and P. P. Gray, “Stable Suspension of Layered Double Hydroxide Nanoparticles in Aqueous Solution,” Journal of the American Chemical Society, vol. 128, no. 1, pp. 36–37, Jan. 2006.

  • [29] E. Leino, P. Mäki-Arvela, V. Eta, N. Kumar, F. Demoisson, A. Samikannu, A.-R. Leino, A. Shchukarev, D. Y. Murzin, and J.-P. Mikkola, “The influence of various synthesis methods on the catalytic activity of cerium oxide in one-pot synthesis of diethyl carbonate starting from CO2, ethanol and butylene oxide,” Catalysis Today, vol. 210, pp. 47–54, Jul. 2013.

  • [30] B. M. Choudary, K. V. S. Ranganath, J. Yadav, and M. Lakshmi Kantam, “Synthesis of flavanones using nanocrystalline MgO,” Tetrahedron Letters, vol. 46, no. 8, pp. 1369–1371, Feb. 2005.

  • [31] M. Ali, M. Idris, and M. Quayum, “Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye,” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 36, 2013.

  • [32] S. Atghia and S. Beigbaghlou, “Nanocrystalline titania-based sulfonic acid (TiO2-Pr-SO3H) as a new, highly efficient, and recyclable solid acid catalyst for preparation of quinoxaline derivatives,” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 38, 2013.

  • [33] F. Sadeghi, F. Khani, A. Azandaryani, Y. Mansouri, Z. Mehrabadi, and A. Nikjou, “Synthesis, characterization, and experimental investigation of surface activity of SERS substrates using neodymium oxide (Nd2O3),” Journal of Nanostructure in Chemistry, vol. 3, no. 1, p. 40, 2013.

  • [34] A. S. Nair, C. Subramaniam, M. J. Rosemary, R. T. Tom, V. R. R. Kumar, D. M. D. J. Singh, J. Cyriac, P. Jain, K. A. Kalesh, S. Bhattacharya, and T. Pradeep, “Nanoparticles-chemistry, new synthetic approaches, gas phase clustering and novel applications,” Pramana, vol. 65, no. 4, pp. 631–640, Oct. 2005.

  • [35] J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, D. T. Hoang, S. Alayoglu, D. R. Butcher, F. (Feng) Tao, Z. Liu, and G. A. Somorjai, “Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems,” Physical Chemistry Chemical Physics, vol. 13, no. 7, pp. 2556–2562, 2011.

  • [36] C. R. Raj, A. I. Abdelrahman, and T. Ohsaka, “Gold nanoparticle-assisted electroreduction of oxygen,” Electrochemistry Communications, vol. 7, no. 9, pp. 888–893, Sep. 2005.

  • [37] M. J. Gracia, J. M. Campelo, E. Losada, R. Luque, J. M. Marinas, and A. A. Romero, “Microwave-assisted versatile hydrogenation of carbonyl compounds using supported metal nanoparticles,” Organic & Biomolecular Chemistry, vol. 7, no. 23, pp. 4821–4824, 2009.

  • [38] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chemical Reviews, vol. 105, no. 4, pp. 1103–1170, Apr. 2005.

  • [39] M. V. Sujitha and S. Kannan, “Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 102, pp. 15–23, Feb. 2013.

  • [40] X.-H. Yang, J. Ling, J. Peng, Q.-E. Cao, L. Wang, Z.-T. Ding, and J. Xiong, “Catalytic formation of silver nanoparticles by bovine serum albumin protected-silver nanoclusters and its application for colorimetric detection of ascorbic acid,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 106, pp. 224–230, Apr. 2013.

  • [41] K. Thirumurthy and G. Thirunarayanan, “A facilely designed, highly efficient green synthetic strategy of a peony flower-like SO4 2− –SnO2-fly ash nano-catalyst for the three component synthesis of a serendipitous product with dimedone in water,” RSC Adv., vol. 5, no. 42, pp. 33595–33606, 2015.

  • [42] K. Thirumurthy and G. Thirunarayanan, “A facile designed highly moderate craspedia flowerlike sulphated Bi2O3-fly ash catalyst: Green synthetic strategy for (6H-pyrido[3,2-b]carbazol-4-yl)aniline derivatives in water,” Arabian Journal of Chemistry, May 2015.

  • [43] G. Thirunarayanan, P. Mayavel, and K. Thirumurthy, “Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 91, pp. 18–22, Jun. 2012.

  • [44] K. Sathiyamoorthi, V. Mala, R. Suresh, S. P. Sakthinathan, D. Kamalakkannan, K. Ranganathan, R. Arulkumaran, R. Sundararajan, S. Vijayakumar, G. Vanangamudi, and G. Thirunarayanan, “Synthesis, Spectral Correlations and Antimicrobial Activities of some 2-Hydroxyphenyl-Styrylketone,” International Letters of Chemistry, Physics and Astronomy, vol. 12, pp. 102–119, Sep. 2013.

  • [45] K. Suman, R. Kumari, M. Atulya, A. Jesil Mathew and K. R. Ethiraj, “Synthesis and biological evaluation of new acetylated pyrazoline analogues”, Pharmacologyonline, vol. 2, pp. 1411–1416, 2011.

  • [46] A. K. Singh, R. K. Prasad and C. S. Singh, “Synthesis, characterization and pharmacological evaluation of some novel 3-indole derivatives”, Der Pharma Chemica, vol. 5, no. 2, pp. 311–319, 2013.

  • [47] M. M. Hania, “Synthesis of Some Imines and Investigation of their Biological Activity,” E-Journal of Chemistry, vol. 6, no. 3, pp. 629–632, 2009.

  • [48] R. Suresh, D. Kamalakkannan, K. Ranganathan, R. Arulkumaran, R. Sundararajan, S. P. Sakthinathan, S. Vijayakumar, K. Sathiyamoorthi, V. Mala, G. Vanangamudi, K. Thirumurthy, P. Mayavel, and G. Thirunarayanan, “Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl imines,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 101, pp. 239–248, Jan. 2013.

  • [49] J. W. Sadownik and D. Philp, “A Simple Synthetic Replicator Amplifies Itself from a Dynamic Reagent Pool,” Angewandte Chemie, vol. 120, no. 51, pp. 10113–10118, Dec. 2008.

  • [50] R. K. Sandhar, J. R. Sharma and M. R. Manrao, “Synthesis and fungitoxicity of C-phenyl substituted benzal-4-fluoroanilines,” Pesticide Research Journal, vol. 17, no. 2, pp. 9–11, 2005.

  • [51] S. S. Karki, “Synthesis and biological evaluation of some novel substituted N-benzylideneaniline derivatives,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 4, pp. 707–717, 2010.

  • [52] C. Catusse, R. Catusse, A. Gaset and J. P. Corrichon, “Synthesis and caracterization of benzylideneamines derivatized to aromatic aldehydes. RMN 1H et 13C”, Journal de la Société Chimique de Tunisie, vol. 2, pp. 11–14, 1985.

  • [53] D. Johnston, D. M. Smith, T. Shepherd, and D. Thompson, “o-Nitrobenzylidene compounds. Part 3. Formation of 4-arylamino-3-methoxycinnoline 1-oxides from N-o-nitrobenzylideneanilines, cyanide ion, methanol: the intermediacy of 2-aryl-3-cyano-2H-indazole 1-oxides,” Journal of the Chemical Society, Perkin Transactions 1, pp. 495–500, 1987.

  • [54] N. Aggarwal, R. Kumar, P. Dureja, and D. S. Rawat, “Schiff Bases as Potential Fungicides and Nitrification Inhibitors,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8520–8525, Sep. 2009.

  • [55] G. Thirunarayanan, P. Mayavel, K. Thirumurthy, S. Dineshkumar, R. Sasikala, P. Nisha and A. Nithyaranjani, “Eco-friendly synthesis and spectral correlations in some 1-phenyl-3-(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines”, European Chemical Bulletin, vol. 2, pp. 598–605, 2013.


Journal + Issues