Mechanical Properties and Biocompatibility of a Biomaterial Based on Deproteinized Hydroxyapatite and Endodentine Cement

Open access

Abstract

Hydroxyapatite is used for bone reconstruction, in order to improve its mechanical properties different substances can be added. In our study new biomaterial is created from deproteinised hydroxyaptite and endodentic cement, its mechanical properties were tested. Material was implanted subcutaneous in rats, then histological and biocompatability tests were performed. Results indicate that stuff has good mechanical properties, short setting time and gradual resorption creating porosity and ability to integrate in bone.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. L. Hench J. Wilson An Introduction to Bioceramics. Vol. 1 pp. 255-267 (1993).

  • [2] D. Wahl J. Czernuszka “Collagen-Hydroxyapatite Composites for Hard Tissue Repair” European Cells and Materials. V. 11. 2006 pp. 43-56.

  • [3] J. Brandt S. Henning G. Michler “Nanocrystalline hydroxyapatite for bone repair: an animal study” Journal Materials in Medicine. V. 21 No 1 pp. 283-294 (2010). http://dx.doi.org/10.1007/s10856-009-3859-1

  • [4] V. Filipenkovs L. Rupeks I. Knets N. Borodajenko Z. Irbe L. Mezmale I. Rozenstrauha V. Vitins “Mechanical properties of cattle bone tissue and natural hydroxyapatite” Material Science and Applied Chemestry Vol. 25 pp. 26-30 2012.

  • [5] U. S. Shin I. K. Yoon G. S. Lee J. Knowles W. Kim “Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements” Journal of Tissue Engineering 2011. http://dx.doi.org/10.4061/2011/674287

  • [6] J. Ǻberg E. Pankotai H. Billstrȍm M. Weszl S. Larsson Z. Lacza H. Engqvist “In Vivo Evaluation of an Injectable Premixed Radiopaque Calcium Phosphate Cement” International Journal of Biomaterials 2011. http://dx.doi.org/10.1155/2011/232574

  • [7] B. N. Brown B. D. Ratner S. B. Goodman S. Amar S. F. Badylak “Macrophage polarization: An opportunity for improved outcomes in biomaterials and regenerative medicine” Journal Biomaterials vol. 33 issue 15 pp. 3792-3802 (2012).

  • [8] F. Scalera F. Gervaso K. P. Sanosh A. Sannino A. Licciulli “Influence of the calcination temperature on morphological and mechanical properties of highly porous hydroxyapatite scaffolds” Ceramics International vol. 39 pp. 4839-4846. (2013). http://dx.doi.org/10.1016/j.ceramint.2012.11.076

  • [9] C. M. Assis L. C. Oliveira Verick M. Santos M. V. Fook A. C. Guastaldi “Comparision of Crystallinity between Natural Hydroxyapatite and Syntetic cp-Ti/HA Coatings” Materials Research Vol. 8 No 2 pp. 207-211 2005. http://dx.doi.org/10.1590/S1516-14392005000200022

  • [10] I. Sopyan M. Mel S. Ramesh K. A. Khalid “Porous hydroxyapatite for artificial bone applications” Science and Technology of Advanced Materials. Vol. 8 pp. 116-123 (2007). http://dx.doi.org/10.1016/j.stam.2006.11.017

  • [11] K. Prabakaran S. Rajeswari “Development of Hydroxyapatite from Natural Fish Bone Through Heat Treatment” Trends in Biomaterials & Artificial Organs Vol. 20(1) pp. 20-23 (2006).

  • [12] G. Poinern R. Brundavanam X. Thi Le S. Djordjevic M. Prokic D. Fawcett “Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic” International Journal of Nanomedicine Vol. 6 pp. 2083-2095 (2011). http://dx.doi.org/10.2147/IJN.S24790

  • [13] J. B. Chang W. K. Hae H. K. Young E. K. Hyoun “Hydroxyapatite bone scaffolds with controlled macrochannel pores” Journal Material Sci: Materials in Medicine Vol. 17 pp. 517-521 (2006).

  • [14] B. S. Kim S. S. Yang J. Lee “A polycaprolactone/cuttlefish bone derived hydroxyapatite composite porous scaffold for bone tissue engineering” Journal Biomedical Materials Research - Part B Applied Biomaterials Vol. 102 issue 5 pp. 943-951 (2014). http://dx.doi.org/10.1002/jbm.b.33075

  • [15] J. Liuyun X. Chengdong J. Lixin X. Lijuan “Effect of hydroxyapatite with different morphology on the crystallization behavior mechanical property and in vitro degradation of hydroxyapatite/poly(lactic-coglycoclic) composite” Journal Composites Science and Technology. Vol. 93 pp. 61-67 (2014). http://dx.doi.org/10.1016/j.compscitech.2013.12.026

  • [16] F. Poumier P. Schaad Y. Haikel J. C. Voegel P. Gramain “Dissolution of syntethic hydroxyapatite in the presence of acidic polypeptides” Journal of Biomedical Materials Research Vol. 45 issue 2 pp. 92-99 (1999). http://dx.doi.org/10.1002/(SICI)1097-4636(199905)45:2

  • [17] B. Muller D. Koch R. Lutz K. Schlegel L. Treccani K. Rezwan “A novel one-pot. process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment” Mater Sci Eng C Mater Biol Appl. Sep. pp. 137-45. (2014). http://dx.doi.org/10.1016/j.msec.2014.05.017

  • [18] J. Saidon H. Jianing Q Zhu K. Safavi L. S. W. Spangberg “Cell and tissue reactions to mineral trioxide aggregate and Portland cement” Oral Surg Oral Med Oral Pathol Oral Radiol Vol. 95 pp. 483-9. (2003). http://dx.doi.org/10.1067/moe.2003.20

  • [19] S. Asgary S. Ehsani “MTA resorption and periradicular healing in an open-apex incisor: A case report” The Saudi Dental Journal Vol. 24 pp. 55-59. (2012). http://dx.doi.org/10.1016/j.sdentj.2011.08.001

  • [20] C. Prati M. G. Gandolfi “Calcium silicate bioactive cements: Biological perspectives and clinical applications” Dental Materials vol. 31 pp.351-370. (2015). http://dx.doi.org/10.1016/j.dental.2015.01.004

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 159 5
PDF Downloads 133 85 3