Determinants of Default in Lithuanian Peer-To-Peer Platforms

Open access

Abstract

The article analyses the factors that determine the probability of debtors’ default in the Lithuanian peer-to-peer market. The results of this study are compared with previous research.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Barasinska N. Schäfer D. (2014). Is Crowdfunding Different? Evidence on the Relation Between Gender and Funding Success from a German Peer-To-Peer Lending Platform // German Economic Review. Vol. 15 No. 4 pp. 436–452. https://doi.org/10.1111/geer.12052

  • 2. Cai S. Lin X. Xu D. Fu X. (2016). Judging Online Peer-to-Peer Lending Behavior: A Comparison of First-Time and Repeated Borrowing Requests // Information & Management. Vol. 53 No. 7 pp. 857–867. https://doi.org/10.1016/j.im.2016.07.006

  • 3. Davis K. Murphy J. (2016). Peer to Peer Lending: Structures Risks and Regulation. Internet access: http://kevindavis.com.au/secondpages/acadpubs/2016/JASSA%20Paper%20-%20P2P%20Lending%20-%20Davis%20and%20Murphy%20-%20final.pdf

  • 4. Ding J. Huang J. Li Y. Meng M. (2018). Is There an Effective Reputation Mechanism in Peer-to-Peer Lending? Evidence from China // Finance Research Letters. https://doi.org/10.1016/j.frl.2018.09.015

  • 5. Emekter R. Tu Y. Jirasakuldech B. Lu M. (2015). Evaluating Credit Risk and Loan Performance in Online Peer-to-Peer (P2P) Lending // Applied Economics. Vol. 47 No. 1 pp. 54–70. https://doi.org/10.1080/00036846.2014.962222

  • 6. Fong A. (2015). Regulation of Peer-to-Peer Lending in Hong Kong: State of Play // Law and Financial Markets Review. Vol. 9 No. 4 pp. 251–259. https://doi.org/10.1080/17521440.2015.1114248

  • 7. Freedman S. Jin G. Z. (2017). The Information Value of Online Social Networks: Lessons from Peer-to-Peer Lending // International Journal of Industrial Organization. Vol. 51 pp. 185–222. https://doi.org/10.1016/j.ijindorg.2016.09.002

  • 8. Funding Circle Statistics. Internet access: www.fundingcircle.com/uk/statistics/

  • 9. Ge R. Feng J. Gu B. Zhang P. (2017). Predicting and deterring default with social media information in peer-to-peer lending // Journal of Management Information Systems. Vol. 34 No. 2 pp. 401–424. https://doi.org/10.1080/07421222.2017.1334472

  • 10. Guo Y. Zhou W. Luo C. Liu C. Xiong H. (2016). Instance-Based Credit Risk Assessment for Investment Decisions in P2P Lending // European Journal of Operational Research. Vol. 249 No. 2 pp. 417–426. doi.org/10.1016/j.ejor.2015.05.050

  • 11. Lei X. (2016). Discussion of the Risks and Risk Control of P2P in China // Modern Economy. Vol. 7 No. 04 pp. 399. doi: 10.4236/me.2016.74043

  • 12. Lichtenwald R. (2014). The History of Peer to Peer Lending. Peer and Social Lending. Internet access: http://peersociallending.com/news/history-peer-peer-lending/

  • 13. Lin M. Prabhala N. R. Viswanathan S. (2013). Judging Borrowers by the Company they Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending // Management Science. Vol. 59 No. 1 pp. 17–35. https://doi.org/10.1080/00036846.2016.1262526

  • 14. Lin X. Li X. Zheng Z. (2017). Evaluating Borrower’s Default Risk in Peer-to-Peer Lending: Evidence from a Lending Platform in China // Applied Economics. Vol. 49 No. 35 pp. 3538–3545. https://doi.org/10.1080/00036846.2016.1262526

  • 15. Liu Y. Zhou Q. Zhao X. Wang Y. (2018). Can Listing Information Indicate Borrower Credit Risk in Online Peer-to-Peer Lending? // Emerging Markets Finance and Trade. Vol. 54 No. 13 pp. 2982–2994. https://doi.org/10.1080/1540496X.2018.1427061

  • 16. Ma H. Z. Wang X. R. (2016). Influencing Factor Analysis of Credit Risk in P2P Lending Based on Interpretative Structural Modeling // Journal of Discrete Mathematical Sciences and Cryptography. Vol. 19 No. 3 pp. 777–786. https://doi.org/10.1080/09720529.2016.1178935

  • 17. Malekipirbazari M. Aksakalli V. (2015). Risk Assessment in Social Lending Via Random Forests // Expert Systems with Applications. Vol. 42 No. 10 pp. 4621–4631. https://doi.org/10.1016/j.eswa.2015.02.001

  • 18. Mateescu A. (2015). Peer-to-Peer Lending. Data & Society Research Institute pp. 19–25. Internet access: https://www.datasociety.net/pubs/dcr/PeertoPeerLending.pdf

  • 19. Milne A. Parboteeah P. (2016). The Business Models and Economics of Peer-to-Peer Lending. Internet access: http://dx.doi.org/10.2139/ssrn.2763682

  • 20. Pokorna M. Sponer M. (2016). Social Lending and its Risks // Procedia-Social and Behavioral Sciences. Vol. 220 pp. 330–337. https://doi.org/10.1016/j.sbspro.2016.05.506

  • 21. Republic of Lithuania Law on Consumer Credit. No. XII-1989. Internet access: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/5c534e403c5c11e68f278e2f1841c088?jfwid=-vkzfyh270

  • 22. Riggins F. J. Weber D. M. (2017). Information Asymmetries and Identification Bias in P2P Social Microlending // Information Technology for Development. Vol. 23 No. 1 pp. 107–126. https://doi.org/10.1080/02681102.2016.1247345

  • 23. Serrano-Cinca C. Gutierrez-Nieto B. López-Palacios L. (2015). Determinants of Default in P2P Lending // PloS One. Vol. 10 No. 10 pp. e0139427. https://doi.org/10.1371/journal.pone.0139427

  • 24. Wei S. (2015). Internet Lending in China: Status Quo Potential Risks and Regulatory Options // Computer Law & Security Review. Vol. 31 No. 6 pp. 793–809. https://doi.org/10.1016/j.clsr.2015.08.005

  • 25. Wooldridge J. M. (2003). Introductory Econometrics: A Modern Approach. – Australia; Cincinnati Ohio: South-Western College Pub. c2003.

  • 26. Zhang Y. Li H. Hai M. Li J. Li A. (2017). Determinants of Loan Funded Successful in Online P2P Lending // Procedia Computer Science. Vol. 122 pp. 896–901. https://doi.org/10.1016/j.procs.2017.11.452

Search