Theoretical Background for the Decision-Making Process Modelling under Controlled Intervention Conditions

Open access

Abstract

This article is intended to theoretically justify the decision-making process model for the cases, when active participation of investing entities in controlling the activities of an organisation and their results is noticeable. Based on scientific literature analysis, a concept of controlled conditions is formulated, and using a rational approach to the decision-making process, a model of the 11-steps decision-making process under controlled intervention is presented. Also, there have been unified conditions, describing the case of controlled interventions thus providing preconditions to ensure the adequacy of the proposed decision-making process model.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bachkirov A. A. (2015). Managerial Decision Making Under Specific Emotions // Journal of Management Psychology. Vol. 30 No 7 pp. 861–874. doi: 10.1108/JMP-02-2013-0071.

  • 2. Bähr C. (2008). How does Sub-National Autonomy Affect the Effectiveness of Structural Funds? // KYKLOS. Vol. 61 No. 1 pp. 3–18. doi: 10.1111/j.1467-6435.2008.00389.x.

  • 3. Barry M. J. Edgman-Levitan S. (2012). Shared Decision Making-Pinnacle of Patient-Centered Care // Medical Journal. Vol. 366 pp. 780–781. doi: 10.1056/NEJMp1109283.

  • 4. Blenko M. W. Mankins M. C. Rogers P. (2010). Spotlight on Strategies for a Changing World: The Decision-Driven Organization // Harvard Business Review. No. 88(6) pp. 54–62. doi: 10.1162/152417302762251291.

  • 5. Bloom N. (2014). Fluctuations in Uncertainty // Journal of Economic Perspectives. Vol. 28 No. 2 pp. 153–176. doi: 10.1257/jep.28.2.153.

  • 6. Catalani M. S. Clerico G. F. (2012). Decision Making Structures: Dealing with Uncertainty within Organizations. - Springer Science & Business Media p. 167.

  • 7. Darškuvienė V. Bendoraitienė E. (2014). Stakeholder Expectations and Influence on Company Decisions // Taikomoji ekonomika: sisteminiai tyrimai = Applied economics: systematic research. T. 8 Nr. 2 pp. 83–96. doi: 10.7220/AESR.2335.8742.2014.8.2.5.

  • 8. De Neufville R. (2003). Real Options: Dealing with Uncertainty in Systems Planning and Design // Integrated Assessment. Vol. 4 No. 1 pp. 26–34. doi: 10.1076/iaij.4.1.26.16461.

  • 9. Dimoka A. Hong Y. Pavlou P. A. (2012). On Product Uncertainty in Online Markets: Theory and Evidence // Quarterly journal. No. 36.

  • 10. Drucker P. F. (2001). The Effective Decision. - Harvard Business Review on Decision Making.

  • 11. Dumitrescu D. I. Soare D. V. (2014). Financial Engineering Instruments Financed from European Structural and Investment Funds and Financial Products issued by Financial Institutions Supporting European Project Implementation // Revista Română de Statistică-Supliment. No. 10/2014.

  • 12. Durand M.-A. Carpenter L. Dolan H. Bravo P. Mann M. Bunn F. et al. (2014). Do Interventions Designed to Support Shared Decision-Making Reduce Health Inequalities? // A Systematic Review and Meta-Analysis. PLOS ONE. Vol. 9 No. 4 pp. 1–13. doi: 10.1371/journal.pone.0094670.

  • 13. Edmans A. Manso G. (2011). Governance through Trading and Intervention: A Theory of Multiple Blockholders // Review of Financial Studies. No. 24 pp. 2395–2428. doi: 10.1093/rfs/hhq145.

  • 14. Fayol H. (1949). General and Industrial Management. - New York: Pitman publishing pp. 107–109.

  • 15. French W. L. Bell C. H. (1999). Organizational Development: Behavioral Science Interventions for Organization Improvement. 6th edition. doi: https://trove.nla.gov.au/work/6066986.

  • 16. Gigerenzer G. (2010) Rationality for Mortals: How People Cope with Uncertainty. - Oxford University Press p. 256. doi:10.1146/annurevpsych-120709-145346 PMID:21126183.

  • 17. Goodwin P. Wright G. (2010). The Limits of Forecasting Methods in Anticipating Rare Events. Technological Forecasting and Social Change. No. 77 pp. 355–368. doi: 10.1016/j.techfore.2009.10.008.

  • 18. Govindan K. Rajendran S. Sarkis J. Murugesan P. (2015). Multi Criteria Decision Making Approaches for Green Supplier Evaluation and Selection: A Literature Review // Journal of Cleaner Production. Vol. 98 pp. 66–83. doi: 10.1016/j.jclepro.2013.06.046.

  • 19. Hargraves I. Montori V. M. (2014). Decision Aids Empowerment And Shared Decision Making // BMJ. Vol. 349: g5811. doi: http://dx.doi.org/10.1136/bmj.g5811.

  • 20. Hoffmann T. C. Legare F. Simmons M. B. McNamara K. McCaffery K. Trevena L. J. et al. (2014). Shared Decision Making: What do Clinicians Need to Know and Why Should They Bother? Medical Journal. Vol. 201 pp. 35–39. doi: 10.5694/mja14.00002.

  • 21. Hoffmann T. C. Montori V. M. Del Mar C. (2014). The Connection Between Evidence - Based Medicine and Shared Decision Making // JAMA. Vol. 312 pp. 1295–12956. doi: 10.1001/jama.2014.10186.

  • 22. Johnson R. A. (1976). Management Systems and Society: An Introduction. - Pacific Palisades California: Goodyear publishing. pp. 148–152.

  • 23. Kabak O. (2012). Uncertainty Modelling in Supply Chain Management: The Trend in the Use of Fuzzy Set Theory. Uncertainty Modelling in Knowledge Management and Decision Making: Proceedings of the 10th international FLINS conference. pp. 541–546. doi: 10.1142/9789814417747_0087.

  • 24. Kahneman D. Lovallo D. Sibony O. (2011) Before You Make That Big Decision // Harvard Business Review. No 89(6) pp. 51–60.

  • 25. Kwakkel J. H. Walker W. E. Marchau V A. W. J. (2010). Classifying and Communicating Uncertainties in Model-Based Policy Analysis // International Journal of Technology Policy and Management. Vol. 10 (4) pp. 299–315. doi: 10.1504/IJTPM.2010.036918.

  • 26. Larson E. (2016). Faster Better Decisions. - Harvard Business Review.

  • 27. Lejarraga T. Pachur Th. Frey R. Hertwig R. (2015). Decisions from Experience: From Monetary to Medical Gambles // Journal of Behavioral Decision Making. Vol. 29 Issue 1 pp. 66–67. doi: 10.1002/bdm.1877.

  • 28. Lempert R. J. Popper S. Bankes S. (2003). Shaping the Next One Hundred Years: New Methods for Quantitative Long Term Policy Analysis. Santa Monica: RAND.

  • 29. Lerner J. Li Y. Valdesolo P. Kassam K. S. (2014). Emotion and decision. Annual review of psychology. Vol. 66 pp. 799–823. doi: 10.1146/annurev-psych-010213-115043.

  • 30. Makridakis S. Hogarth R. M. Gaba A. (2009). Forecasting and Uncertainty in the Economic and Business World // International Journal of Forecasting. Vol. 25 pp. 794–812. doi: 10.1016/j.ijforecast.2009.05.012.

  • 31. Marchau V. A. W. J. Walker W. E. Van Duin R. (2009). An Adaptive Approach to Implementing Innovative Urban Transport Solutions // Transport Policy. No. 15 pp. 405–412. doi: 10.1016/j.tranpol.2008.12.002.

  • 32. Mardani A. Jusoh A. Zavadskas E. K. (2015). Fuzzy Multiple Criteria Decision-Making Techniques and Applications – Two Decades Review from 1994 to 2014 // Expert Systems with Applications. Vol. 42 Issue 8 pp. 4126–4148. doi: 10.1016/j.eswa.2015.01.003.

  • 33. Matzler K. Uzelac B. Bauer F. (2014). Intuition: The Missing Ingredient for Good Managerial Decision Making // Journal of Business Strategy. Vol. 35 No. 6 pp. 31–40. doi: 10.1108/JBS-12-2012-0077.

  • 34. Mcdaniel R. R. Driebe D. J. (eds.) (2005). Uncertainty and Surprise in Complex Systems: Questions on Working the Unexpected. - Springer. doi: 10.1057/rm.2009.15.

  • 35. Mowles C. (2015). Managing in Uncertainty: Complexity and the Paradoxes of Everyday Organizational Life. Routledge. p. 188.

  • 36. Palomares I. Martínez L. Herrera F. (2014). MENTOR: A graphical monitoring tool of preferences evolution in large-scale group decision making // Knowledge-Based Systems. No. 58 pp. 66–74. doi: 10.1016/j.knosys.2013.07.003.

  • 37. Qi J. (2009). The Threat of Shareholder Intervention and Firm Innovation. - New York Law Journal.

  • 38. Saaty L. (2013). Theory and Applications of the Analytic Network Process: Decision Making with Benefits Opportunities Cost and Risks. ISBN 978-1-8886031-6-3 (e-book).

  • 39. Secchi D. (2011). Extendable Rationality: Understanding Decision Making in Organizations. - Springer Science & Business Media p. 180. doi: 10.1007/978-1-4419-7542-3.

  • 40. Stein L. C. D. Wang C. C. Y (2016). Economic Uncertainty and Earning Management. - Harvard Business School: Business Research for Business Leaders. HBS working paper. No. 16-103.

  • 41. Swanson D. Barg S. Tyler S. Venema H. Tomar S. Bhadwal S. Nair S. Roy D. Drexhage J. (2010). Seven Tools for Creating Adaptive Policies // Technological Forecasting and Social Change. No. 77 pp. 924–939. doi: 10.1016/j.techfore.2010.04.005.

  • 42. Van Geenhuizen M. Reggiani A. Rietveld P. (2007). New Trends in Policymaking for Transport and Regional Network Integration. In: Van Geenhuizen M. Reggiani A. & Rietvelt P. (eds.) Policy Analysis of Transport Networks. - Alsdershot: Ashgate.

  • 43. Van Geenhuizen N M. Thissen W. A. H. (2007). A Framework for Identifying and Qualifying Uncertainty in Policy Making: The Case of Intelligent Transport Systems. In: Van Geenhuizen M. Reggiani A. & Rietvelt P. (eds.) Policy Analysis of Transport Networks. Aldershot: Ashgate.

  • 44. Vveinhardt J. (2012). Mobingo intervencija individo organizacijos ir sociumo lygmenyse: kompleksinio modelio struktūra // Organizacijų vadyba: sisteminiai tyrimai = Management of Organozations: Systematic Reseach. Nr. 61 p. 129–142.

  • 45. Walker W. E. Harremoes E. Rotmans J. van der Sluijs J. P. Asselt M. B. A. Janssen P. Krayer von Krauss M. P. (2003). Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integrated Assessment. Vol. 4 No. 1 pp. 5–17.

  • 46. Walker W. E. Marchau V. A. W. J. Swanson D. (2010). Addressing Deep Uncertainty Using Adaptive Policies: Introduction to Section 2. // Technological Forecasting and Social Change. No. 77 pp. 917–923. doi: 10.1016/j.techfore.2010.04.004.

  • 47. Wan S. P. (2013). 2-Tuple Linguistic Hybrid Arithmetic Aggregation Operators and Application to Multi-Attribute Group Decision Making // Knowledge-Based Systems. No. 45 pp. 31–40. doi: 10.1016/j.knosys.2013.02.002.

  • 48. Wan S. P. Li D. F. (2014). Atanassov’s Intuitionistic Fuzzy Programming Method for Heterogeneous Multiattribute Group Decision Making with Atanassov’s Intuitionistic Fuzzy Truth Degrees // IEEE Transactions on Fuzzy Systems. Vol. 22 Issue 2 Publisher: IEEE Press. doi: 10.1109/TFUZZ.2013.2253107.

  • 49. Zaleckienė J. (2016). Ūkio diversifikavimo sprendimo priėmimas: Lietuvos atvejis // Management Theory and Studies for Rural Business and Infrastructure Development. Vol. 38. No. 2 pp. 168–177. doi: 10.15544/mts.2016.14.

  • 50. Zsambok C. E. Klein G. (2014). Naturalistic Decision Making (book). - New York: Psychology Press. doi: 10.1518/001872008X288385.

Search