Open access

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).

[1] Rogalski, A. (2011). Infrared Detectors. 2nd ed. CRC Press, Boca Raton.

[2] Wojtas, J., Bielecki, Z., Stacewicz, T., Mikołajczyk, J., Nowakowski, M. (2012). Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron. Rev., 20, 26-39.

[3] Elliot, C.T., Gordon, N.T., Hall, R.S., Phillips, T.J., Jones, C.L., Best, A. (1997). 1/f noise studies in uncooled narrow gap Hg1-xCdxTe non-equilibrium diodes. J. Electron. Mater., 25, 643-648.

[4] Kopytko, M., Jóźwikowski, K., Madejczyk, P., Pusz, W., Rogalski, A. (2013). Analysis of the response time in high-temperature LWIR HgCdTe photodiodes operating in non-equilibrium mode. Infrared Phys. Technol., 61, 162-166.

[5] Kopytko, M., Jóźwikowski, K., Rogalski, A., Jóźwikowska, A. (2010). High frequency response of nearroom temperature LWIR HgCdTe heterostructure photodiodes. Opto-Electron. Rev., 18, 277-283.

[6] Pawluczyk, J., Piotrowski, J., Pusz, W., Koźniewski, A., Orman, Z., Gawron, W., Piotrowski, A. (2015). Complex behavior of time response of HgCdTe HOT photodetectors. J. Electron. Mater., 44, 3163-3173.

[7] Madejczyk, P., Gawron, W., Martyniuk, P., Kębłowski, A., Piotrowski, A., Pusz, W., Kowalewski, A., Piotrowski, J., Rogalski, A. (2013). MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors. Semicond. Sci. Technol., 28, 105017, 1−7.

[8] Madejczyk, P., Gawron, W., Martyniuk, P., Kębłowski, A., Pusz, W., Pawluczyk, J., Kopytko, M., Rutkowski, J., Rogalski, A., Piotrowski, J. (2017). Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes. Infrared Phys. Technol., 81, 276-281.

[9] Rogalski, A. (2005). HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267-2336.

[10] Ashley, T., Elliott, C.T. (1985). Non-equilibrium mode of operation for infrared detection. Electron. Lett., 21, 451-452.

[11] Elliot, C.T., Gordon, N.T., Hall, R.S., Philips, T.J., White, A.M., Jones, C.L., Maxey, C.D., Metcalfe, N.E. (1996). Recent results on MOVPE grown heterostructure devices. J. Electron. Mater., 25, 1139-1145.

[12] Emelie, P.Y., Philips, J.D., Velicu, S., Grein, C.H. (2007). Modeling and design consideration of HgCdTe infrared photodiodes under non equilibrium operation. J. Electron. Mater., 36, 846-851.

[13] Emelie, P.Y., Velicu, S., Grein, C.H., Philips, J.D., Wijewarnasuriya, P.S., Dhar, N.K. (2008). Modeling of LWIR HgCdTe Auger-suppressed infrared photodiodes under non equilibrium operation. J. Electron. Mater., 37, 1362-1368.

[14] Piotrowski, A., Piotrowski, J., Gawron, W., Pawluczyk, J., Pędźinska, M. (2009). Extension of spectral range of Peltier cooled photodetectors to 16 μm. Proc. SPIE, 7298, 729824.

[15] Stanaszek, D., Piotrowski, J., Piotrowski, A., Gawron, W., Orman, Z., Paliwoda, R., Brudnowski, M., Pawluczyk, J., Pędzińska, M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820M-74820M-11.

[16] Piotrowski, J., Pawluczyk, J., Piotrowski, A., Gawron, W., Romanis, M., Kłos, K. (2010). Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev., 18, 318-327.

[17] Velicu, S., Grein, C.H., Emelie, P.Y., Itsuno, A., Philips, J.D., Wijewarnasuriya, P. (2010). MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements. J. Electron. Mater., 39, 873-881.

[18] APSYS Macro/User’s Manual ver. 2011. (2011). Crosslight Software, Inc.

[19] Capper, P.P. Properties of narrow gap cadmium-based compounds. London, U.K.: Inst. Elect. Eng.

[20] Wenus, J., Rutkowski, J., Rogalski, A. (2001). Two-dimensional analysis of double-layer heterojunction HgCdTe Photodiodes. IEEE Trans. Electron Devices, 48, 7, 1326−1332.

[21] Li, Q., Dutton, R.W. (1991). Numerical small-signal AC modeling of deep-level-trap related frequencydependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates. IEEE Trans. Electron Devices, 38, 1285-1288

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 8
PDF Downloads 28 28 7