Fast Second Order Original Prony’s Method for Embedded Measuring Systems

Open access

Abstract

The paper presents a method of adaptation of the original second order Prony’s method for applications in lowcost digital measurement systems with low computing performance. The presented method can be used in measuring systems where it is important to obtain in real time the values of amplitude, frequency, initial phase and damping coefficient of a single sinusoidal component of an analysed signal. The paper presents optimized, in terms of the number of mathematical operations, implementation of the method in selected embedded devices as well as the calculation times of the method for each platform.

[1] Duda, K., Zieliński, T.P., Magalas, L.B., Majewski, M. (2011). DFT based Estimation of Damped Oscillation’s Parameters in Low-frequency Mechanical Spectroscopy. IEEE Trans. Instrum. Meas., 60(11), 3608−3618.

[2] Duda, K. (2011). DFT interpolation algorithm for Keiser-Bessel and Dolph-Chebyshev windows. IEEE Trans. Instrum. Meas., 60(3), 784−790.

[3] Yu, C., Huang, Y., Jiang, J. (2010). A Full- and Half- Cycle DFT-based Technique for Fault Current Filtering. 2010 IEEE International Conference on Industrial Technology (ICIT), Vina del Mar, Chile, 14−17.

[4] Wu, R.C., Chiang, C.T. (2010). Analysis of the Exponential Signal by the Interpolated DFT Algorithm. IEEE Trans. Instrum. Meas., 59(12), 3306−3317.

[5] Borkowski, J., Mroczka, J. (2010). LIDFT method with classic data windows and zero padding in multifrequency signal analysis. Measurement (London), 43(10), 1595−1602.

[6] Borkowski, J., Mroczka, J. (2002). Metrological analysis of the LIDFT method. IEEE Transactions on Instrumentation and Measurement, 51(1), 67−71.

[7] Wen, H., Teng, Z., Wang, Y., Zeng, B., Hu, X. (2011). Simple Interpolated FFT Algorithm Based on Minimize Sidelobe Windows for Power-Harmonic Analysis. IEEE Trans. Power Electronics, 26(9), 2570−2579.

[8] Belega, D., Petri, D. (2013). Accuracy Analysis of the Multicycle Synchrophasor Estimator Provided by theInterpolated DFT Algorithm. IEEE Trans. Instrum. Meas., 62(5), 942−953.

[9] Borkowski, J.S., Kania, D.Ł., Mroczka, J. (2014). Influence of A/D quantization in an interpolated DFT based system of power control with a small delay. Metrol. Meas. Syst., 21(3), 423−432.

[10] Szmajda, M., Górecki, K., Mroczka, J. (2010). Gabor Transform, SPWVD, Gabor-Wigner Transform and Wavelet Transform. Tools For Power Quality Monitoring, 17(3), 383−396.

[11] Delfino, F., Procopio, R., Rossi, M., Rachidi, F. (2012). Prony Series Representation for the Lightning Channel Base Current. IEEE Trans. Electromagnetic Compatibility, 54(2), 308−315.

[12] Peng, J.C. H., Nair, N.K.C. (2009). Adaptive sampling scheme for monitoring oscillations using Prony analysis. Generation, Transmission & Distribution, IET, 3(12), 1052−1060.

[13] Tawfik, M.M., Morcos, M.M. (2005). On the use of Prony method to locate faults in loop systems by utilizing modal parameters of fault current. IEEE Trans. Power Del., 20(1), 532−534.

[14] Tawfik, M.M., Morcos, M.M. (2006). Fault Location on Loop Systems Using the Prony Algorithm. Electric Power Components and Systems, 34(4), 433−444.

[15] Zahlay, F.D., Rama Rao, K.S. (2012). Neuro-Prony and Taguchi’s methodology based adaptive autoreclosure scheme for electric transmission systems. IEEE Trans. Power Del., 27(2), 575−582.

[16] Zygarlicki, J., Mroczka, J. (2014). Prony’s method with reduced sampling - numerical aspects. Metrol. Meas. Syst., 21(3), 521−534.

[17] Zygarlicki, J., Zygarlicka, M., Mroczka, J., Latawiec, K. (2010). A reduced Prony’s method in power quality analysis - parameters selection. IEEE Transactions on Power Delivery, 25(2), 979−986.

[18] Zygarlicki, J., Mroczka, J. (2012). Variable-frequency Prony method in the analysis of electrical power quality. Metrol. Meas. Syst., 19(1), 39−48.

[19] Zygarlicki, J., Mroczka, J. (2012). Prony method used for testing harmonics and interharmonics of electric power signals. Metrol. Meas. Syst., 19(4), 659−672.

[20] Zygarlicki, J., Zygarlicka, M., Mroczka, J. (2008). Prony’s method in power quality analysis. Proc. 9th Int. Scientific Conf. Electric Power Engineering (EPE), Brno, Czech Republic, 115−119.

[21] Marple, S., Lawrence, J. (1987). Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall.

[22] https://www.nuvoton.com/resource-files/DA00-NUC140ENF1.pdf (May 2017).

[23] http://www.ti.com/lit/ds/symlink/tm4c1233h6pm.pdf (May 2017).

[24] http://www.ti.com/lit/ds/symlink/tms320f28027.pdf (May 2017).

[25] http://www.ti.com/lit/ds/slas735j/slas735j.pdf (May 2017).

[26] Kumaresan, R., Feng, Y. (1991). FIR prefiltering improves Prony's method. IEEE Trans. Signal Processing, 39(3), 736−741.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 18
PDF Downloads 41 41 10