The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO). Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

[1] Taslakov, M.A., Simeonov, et al. (2004). Quantum cascade laser based system for line-of-sight data transmission in the mid IR. Proc. SPIE 5830, doi:

[2] Uysal, M., et al. (2016). Optical Wireless Communications An Emerging Technology. Signals and Communication Technology, 1−23.

[3] Saini, S., Gupta, A. (2014). Investigation to Find Optimal Modulation Format for Low Power Inter-Satellite Optical Wireless Communication. Wireless and Optical Communications Networks (WOCN), doi:

[4] Alkholidi, A.G., Altowij, K. (2012). Optical Communications Systems: Effect of clear atmospheric turbulence on quality of free space optical communications in Western Asia. InTECH, doi 10.5772/1807.

[5] Fletcher, G.D.T., Hicks, R., Laurent, B. (2002). The SILEX optical interorbit link experiment. IEEE J. Elec. & Comm. Eng., 3(6), 273-279.

[6] Muth, J. (2017). Free-space Optical Communications: Building a 'deeper' understanding of underwater optical communications. Laser Focus World.

[7] Wilson, K.E., Lesh, J.R. (1993). An overview of galileo optical experiment (GOPEX), Tech Report: TDA progress Report 42−114. Communication Systems Research Section, NASA.

[8] Wilson, K.E. (1996). An overview of the GOLD experiment between the ETS-VI satellite and the table mountain facility, TDA Progress Report 42−124. Comm. Sys. and Research Sec., 9−19.

[9] Chlestil, Ch., et al. (2007). Optical wireless on swarm UAVs for high bit rate application. The Mediterranean Journal of Computers and Networks, 3(4), 142−150.

[10] Ortiz, G.G., et al. (2003). Design and development of a robust ATP subsystem for the altair UAV-to-ground lasercomm 2.5-Gbps demonstration. Proc. SPIE 4975, 103−114.

[11] http://www.cyberbajt.pl/raport/40/0/142/

[12] Wang, Ch.Y., et al. (2009). Mode-locked pulses from mid-infrared Quantum Cascade Lasers. Optics Express, 17(15), 12929−12943.

[13] Catalogue of Sonardyne firm (2017). Sonardyne Subsee Technology.

[14] Sadiku, M.N.O., et al. (2016). Free Space Optical Communications: An Overview. European Scientific Journal, 12(9).

[15] Kazaura, K., et al. (2008). Studies on next generation access technology using radio over free space optic links. 2nd International Conference on Next Generation Mobile Applications, Services, and Technologies - presentation.

[16] Ramirez-Iniguez, R., Idrus, S.M., Sun, Z. (2007). Optical Wireless Communications IR for Wireless Connectivity. Taylor & Francis Group, CRC Press.

[17] Arnon, S. (2003). Optical Wireless Communications. Encyclopedia of Optical Engineering.

[18] Kasap, S., Ruda, H., Boucher, Y. (2009). Cambridge illustrated handbook of optoelectronics and photonics. Cambridge University Press.

[19] Bouchet, O., et al. (2010). Free-Space Optics: Propagation and Communication. Book, Wiley-ISTE.

[20] Talib, M.F., et al. (2017). Investigation on heavy precipitation effects over FSO link. MATEC Web of Conferences, 97, 01113 doi:

[21] Stull, R.B. (1988). Atmospheric Sciences Library: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers.

[22] Alkholidi, A.G., Altowij, K.S. (2014). Free Space Optical Communications -Theory and Practices.

[23] Lawson, J.K., Carrano, C.J. (2006). Using Historic Models of Cn2 to predict r0 and regimes affected by atmospheric turbulence for horizontal, slant and topological paths. Proc. SPIE 6303, doi:

[24] Bloom, S. (2001). The physics of free-space optics. AirFiber Inc., 802-006-000, M-A1, 1−22.

[25] Singal, P., Rai, S., Punia, R., et al. (2015). Comparison of different transmitters using 1550 nm and 10 000 nm in FSO communication systems. Int. Journal of Computer Science & Information Technology, 7(3), 107−112.

[26] Berman, G.P., Chumak, A.A., et al. (2007). Beam wandering in the atmosphere: the effect of partial coherence. Physical Review E, 76, 056606-1−056606-7.

[27] Xian, Q., Wen-Yue, Z., et al. (2012). Long-distance propagation of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence. Chin. Phys. B, 2(9), 094202-1−094202-8.

[28] Zaki Rashed, A.N., Sharshar, H.A. (2014). Error Probability and Laser Beam Propagation Analysis in Local Area Optical Wireless Communication Networks Using Pulse Position Modulation Technique under Atmospheric Turbulence Effects. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), 3, 261−272.

[29] Willebrand, H., Ghuman, B. (2002). Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing.

[30] Bloom, S., Korevaar, E., et al. (2003). Understanding the performance of free-space optics. Journal of Optical Networking, 2(6), 178−200.

[31] Rongqing, H., O’Sullivan, M. (2009). Fiber Optic Measurement Techniques, 486−494.

[32] Forin, D.M., Incerti, G. (2010). Free Space Optical Technologies: Trends in Telecommunications Technologies, ed. Bouras, Ch.J.

[33] Altowij, K.S., Alkholidi, et al. (2010). The effect of Clear Atmospheric Turbulence on the Quality of the Free Space Optical Communications in Yemen. Frontiers of Optoelectronics in China, 3(4).

[34] Boone, B.G., Bruzzi, J.R., et al. (2004). Optical Communications Development for Spacecraft Applications. Johns Hopkins Apl Technical Digest, 25(4), 306−315.

[35] IEC 60825-1, International Standard, Safety of laser products, Edition 3.0 2014-05.

[36] Manor, H., Arnon, S. (2003). Performance of an optical wireless communication system as a function of wavelength. Applied Optics, 42(21), 4285−4294.

[37] Pavelchek, A., Trissel, R., et al. (2004). Long wave infrared (10 μm) Free Space Optical Communication. Proc. of SPIE, 5160, 247−252.

[38] Soni, G., Malhotra, J.T. (2011). Free Space Optics System: Performance and link availability. International Journal of Computing and Corporate Research, 1(4).

[39] Martini, R., Whittaker, E.A. (2005). Quantum cascade laser-based free space optical communications. J. Opt. Fiber. Commun. Rep., 2, 1-14.

[40] Leitgeb, E., Plank, T., et al. (2014). Free Space Optics in different (civil and military) application scenarios in combination with other wireless technologies. Telecommunications Network Strategy and Planning Symposium (Networks), doi:

[41] Milner, S.D., Davis, C.C. (2004). Hybrid free space optical/RF networks for tactical operations. Military Communications Conference (MILCOM), doi:

[42] Akbulut. A., et al. An experimental hybrid FSO/RF communication system. Research supported by Ankara University Scientific Research Projects, Project No: 2001-00-00-006.

[43] Nadeem, F. et al. (2009). Weather effects on hybrid FSO/RF communication link. IEEE Journal on Selected Areas in Communications, 27(9).

[44] Faist, J. (2013). Quantum cascade lasers. Oxford University Press.

[45] Gutowski, P., Karbownik, P., et al. (2014). Room Temperature AlInAs/InGaAs/InP Quantum Cascade Lasers. Photonics Letters of Poland, 6(4), 142−144.

[46] Gutowski, P., Sankowska, I., et al. (2017). MBE Growth of Strain-Compensated InGaAs/InAlAs/InP Quantum Cascade Lasers. Journal of Crystal Growth, 466, 22−29.

[47] Gutowska, M., Gawron, W., et al. (2010). New Detection Modules for Free Space Optics. Photonics Letters of Poland, 2(2).

[48] Piotrowski, J., Orman, Z., et al. (2005). Uncooled long wave infrared photodetectors with optimized spectra response at selected spectral ranges. Proc. SPIE, 5783.

[49] Piotrowski, A., Gawron, W., et al. (2005). Improvements in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors. Proc. SPIE, 5957, 108−116.

[50] Piotrowski, A., Klos, K., et al. (2007). Uncooled or minimally cooled 10μm photodetectors wth subnanosecond response time. Proc. SPIE, 6542.

[51] Piotrowski, J., Rogalski, A. (2007). High-Operating-Temperature Infrared Photodetectors. SPIE.

[52] Piotrowski, J., Piotrowski, A. (2010). Mercury Cadmium Telluride: Growth, Properties and Applications: Room temperature photodetectors. ed. Capper, P., Garland, J., Willey.

[53] Piotrowski, J., Galus, W., et al. (1991). Near Room-Temperature IR Photo-detectors. Infrared Phys., 31, 11−48.

[54] Gnyba, M., Smulko, J., Kwiatkowski, A., Wierzba, P. (2011). Portable Raman spectrometer-design rules and applications. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(3), 325−329.

[55] Kwiatkowski, A., Czerwicka, M., Smulko, J., Stepnowski, P. (2014). Detection of denatonium benzoate (Bitrex) remnants in noncommercial alcoholic beverages by raman spectroscopy. Journal of Forensic Sciences, 59(5), 1358−1363.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 238 41
PDF Downloads 84 84 20