Estimation of UAV Position with Use of Smoothing Algorithms

Open access

Abstract

The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.

[1] Matuszewski, J. (2008). Specific emitter identification. International Radar Symposium, Wroclaw, 1–4.

[2] Cumming, I.G., Wong, F.H., (2005). Digital Processing of Synthetic Aperture Radar Data. Algorithms and Implementation. Artech House.

[3] Mengdao, X., Xiuwei, J., Renbiao, W., Feng, Z., Zheng, B. (2009). Motion Compensation for UAV SAR Based on Raw Radar Data. IEEE Transactions an Geoscience and Remote Sensing, 8, 2870–2883.

[4] Samczyński, P., Malanowski, M., Gromek, D., Gromek, A., Kulpa, K., Krzonkalla, J., Mordzonek, M., Nowakowski, M. (2014). Effective SAR image creation using low cost INS/GPS. International Radar Symposium, Gdańsk, 174−177.

[5] Groves, P. (2008). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House.

[6] Titterton, D.H., Weston, J.L. (2004). Strapdown Inertial Navigation Technology. Institution of Electrical Engineers, UK, 17−57.

[7] Farrell, J.A. (2008). Aided Navigation GPS with High Rate Sensors. McGraw-Hill.

[8] Anderson, B.D.O., Moore, J.B. (1979). Optimal Filtering. Prentice-Hall, INC, Englewood Cliffs, New Jersey.

[9] Brown, R.G., Hwang, P.Y.C. (2012). Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, Inc.

[10] Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press.

[11] Kaniewski, P. (2010). Structures, models and algorithms in integrated positioning and navigation systems. Wyd. WAT, Warszawa.

[12] Gelb, A. (2001). Applied Optimal Estimation. Massachusetts Institute of Technology, Cambridge, Massachusetts and London.

[13] Li, X., Xie, Y., Bi, D., Ao, Y. (2013). Kalman Filter Based Method for Fault Diagnostics of Analog Circuits. Metrol. Meas. Syst., 20(2), 307−322.

[14] Konatowski, S., Pienieżny, A.T. (2007). A comparison of estimation accuracy by the use of KF, EKF & UKF filters. WIT Transactions on Modelling and Simulation, 46, 779−789.

[15] Śmieszek, M., Dobrzańska, M. (2015). Application of Kalman Filter in Navigation Process of Automated Guided Vehicles. Metrol. Meas. Syst., 22(3), 443−454.

[16] Fornaro, G. (1999). Trajectory deviations in airborne SAR: analysis and compensation. IEEE Transactions on Aerospace and Electronics Systems, 35(3), 997−1009.

[17] Kaniewski, P., Leśnik, C., Susek, W., Serafin, P. (2015). Airborne radar terrain imaging system. International Radar Symposium, Dresden, 248−253.

[18] Einicke, G.A. (2012). Smoothing, Filtering and Prediction: Estimating the Past, Present and Future. Published by InTech.

[19] Meditch, J.S. (1969). Stochastic Optimal Linear Estimation and Control. New York, McGraw Hill.

[20] Łabowski, M., Kaniewski, P., Konatowski, S., (2016). Estimation of flight path deviations for SAR radar installed on UAV. Metrol. Meas. Syst., 23(3), 383–391.

[21] Rauch, H.E., (1963). Solutions to the Linear Smoothing Problem. IEEE Transactions on Automatic Control, 8, 371−372.

[22] Rauch, H.E., Tung, F., Striebel, C.T. (1965). Maximum Likelihood Estimation of Linear Dynamic Systems. AIAA Journal, 3(8), 1445−1450.

[23] Techy, L., Morgansen, K.A., Woolsey, C.A. (2011). Long-baseline acoustic localization of the Seaglider underwater glider. American Control Conference (ACC), San Francisco.

[24] Kaniewski, P., Konatowski, S., (2014). Software Toolbox for Simulation of Integrated Navigation Systems. Przegląd Elektrotechniczny, 90(8), 168−171.

[25] Bednarek, M., Będkowski, L. (2008). Dąbrowski T.: Comparative-threshold diagnosing in messages transmission system. Przegląd Elektrotechniczny, 84(11A), 320−324.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 16
PDF Downloads 25 25 6