Current Fluctuation Measurements of Amperometric Gas Sensors Constructed with Three Different Technology Procedures

Open access


Electrochemical amperometric gas sensors represent a well-established and versatile type of devices with unique features: good sensitivity and stability, short response/recovery times, and low power consumption. These sensors operate at room temperature, and therefore have been applied in monitoring air pollutants and detection of toxic and hazardous gases in a number of areas. Some drawbacks of classical electrochemical sensors are overcome by the solid polymer electrolyte (SPE) based on ionic liquids. This work presents evaluation of an SPE-based amperometric sensor from the point of view of current fluctuations. The sensor is based on a novel three-electrode sensor platform with solid polymer electrolytes containing ionic liquid for detection of nitrogen dioxide − a highly toxic gas that is harmful to the environment and presenting a possible threat to human health even at low concentrations. The paper focuses on using noise measurement (electric current fluctuation measurement) for evaluation of electrochemical sensors which were constructed by different fabrication processes: (i) lift-off and drop-casting technology, (ii) screen printing technology on a ceramic substrate and (iii) screen printing on a flexible substrate.

[1] Xiong, L., Compton, R.G. (2014). Amperometric Gas detection: A Review, Int. J. Electrochem. Sci., 9, 7152-81.

[2] Janata, J. (2009). Principles of Chemical Sensors. Boston, MA: Springer US.

[3] Stetter, J.R., Li, J. (2008). Amperometric gas sensors a review. Chem. Rev., 108, 352-66.

[4] Buzzeo, M.C., Hardacre, C., Compton, R.G. (2004) Use of Room Temperature Ionic Liquids in Gas Sensor. Design Anal. Chem., 76, 4583-8.

[5] Silvester, D. S. (2011). Recent advances in the use of ionic liquids for electrochemical sensing. Analyst, 136, 4871-82.

[6] Kubersky, P., Sedlak, P., Hamaček, A., Nešpůrek, S., Kuparowitz, T., Šikulam J., Majzner, J., Sedlakova, V., Grmela, L., Syrovy, T. (2015). Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys., 456, 111-7.

[7] Toniolo, R., Dossi, N., Pizzariello, A., Doherty, A.P., Bontempelli, G. (2012). A Membrane Free Amperometric Gas Sensor Based on Room Temperature Ionic Liquids for the Selective Monitoring of NOx Electroanalysis. 24, 865-71.

[8] Kubersky, P., Hamaček, A., Nešpůrek, S., Soukup, R., Vik, R. (2013). Effect of the geometry of a working electrode on the behavior of a planar amperometric NO2 sensor based on solid polymer electrolyte. Sens. Actuators B Chem., 187, 546-52.

[9] Kubersky, P., Syrovy, T., Hamaček, A., Nešpůrek, S., Syrova, L. (2015). Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sens. Actuators B Chem., 209, 1084-90.

[10] Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 8, 621-9.

[11] Rogers, E.I., O’Mahony, A.M., Aldous, L., Compton, R.G. (2010). Amperometric Gas Detection Using Room Temperature Ionic Liquid Solvents. ECS Trans., 33, 473-502.

[12] Singh, P.S., Chan, H.S.M., Kang, S., Lemay, S.G. (2011). Stochastic Amperometric Fluctuations as a Probe for Dynamic Adsorption in Nanofluidic. Electrochemical Systems J. Am. Chem. Soc., 133, 18289-95.

[13] Rehman, A., Zeng, X. (2012). Ionic liquids as green solvents and electrolytes for robust chemical sensor development. Acc. Chem. Res., 45, 1667-77.

[14] Vandamme, L.K.J. (1994). Noise as a diagnostic tool for quality and reliability of electronic devices. Electron Devices IEEE Trans. On, 41, 2176-87.

[15] Sedlakova, V., Majzner, J., Sedlak, P., Kopecky, M., Sikula, J., Zarnik, M.S., Belavic, D., Hrovat, M. (2012). Evaluation of piezoresistive ceramic pressure sensors using noise measurements. Inf. MIDEM, 42, 109-14.

[16] Zarnik, M.S., Sedlakova, V., Belavic, D., Sikula, J., Majzner, J., Sedlak, P. (2013). Estimation of the longterm stability of piezoresistive LTCC pressure sensors by means of low-frequency noise measurements. Sens. Actuators Phys., 199, 334-43.

[17] Santo Zarnik, M., Belavic, D., Sedlakova, V., Sikula, J., Kopecky, M., Sedlak, P., Majzner, J. (2013) Comparison of the Intrinsic Characteristics of LTCC and Silicon Pressure Sensors by Means of 1/f Noise. Measurements Radioengineering, 22, 227-32.

[18] Contaret, T., Seguin, J.L., Aguir, K., Menini, P. (2013). Adsorption-desorption noise as a selective detection tool for metal-oxide gas microsensors. 22nd International Conference on Noise and Fluctuations, 1-4.

[19] Schmera, G., Kish, L.B., (2002). Fluctuation-enhanced gas sensing by surface acoustic wave devices. Fluct. Noise Lett., 02, L117-23.

[20] Kish, L.B., Li, Y., Solis, J.L., Marlow, W.H., Vajtai, R., Granqvist, C.G., Lantto, V., Smulko, J.M., Schmera, G. (2005). Detecting harmful gases using fluctuation-enhanced sensing with Taguchi sensors. IEEE Sens. J., 5, 671-6.

[21] Ayhan, B., Kwan, C., Zhou, J., Kish, L.B., Benkstein, K.D., Rogers, P.H., Semancik, S. (2013). Fluctuation enhanced sensing (FES) with a nanostructured, semiconducting metal oxide film for gas detection and classification. Sens. Actuators B Chem., 188, 651-60.

[22] Macku, R., Smulko, J., Koktavy, P., Trawka, M., Sedlak, P. (2015). Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators B Chem., 213, 390-6.

[23] Smulko, J.M., Ederth, J., Li, Y., Kish, L.B., Kennedy, M.K., Kruis, F.E. (2005). Gas sensing by thermoelectric voltage fluctuations in SnO2 nanoparticle films. Sens. Actuators B Chem., 106, 708-12.

[24] Contaret, T., Seguin, J., Aguir, K. (2011). Physical-based characterization of low frequency responses in metal-oxide gas sensors 2011. IEEE Sensors 2011 IEEE Sensors. 141-4.

[25] Sedlak, P., Sikula, J., Majzner, J., Vrnata, M., Fitl, P., Kopecky, D., Vyslouzil, F., Handel, P.H. (2012) Adsorption-desorption noise in QCM gas sensors. Sens. Actuators B Chem., 166-167, 264-8.

[26] Djurić, Z., Jakšić, O., Randjelović, D. (2002). Adsorption-desorption noise in micromechanical resonant structures. Sens. Actuators Phys., 96, 244-51.

[27] Ahmadi, M.M., Jullien, G.A. (2009). Current-Mirror-Based Potentiostats for Three-Electrode Amperometric. Electrochemical Sensors IEEE Trans. Circuits Syst. Regul. Pap., 56, 1339-48.

[28] Bronzino, J.D. (1999). Biomedical Engineering Handbook. CRC Press.

[29] Prasek, J., Trnkova, L., Gablech, I., Businova, P., Drbohlavova, J., Chomoucka, J., Adam, V., Kizek, R., Hubalek, J. (2012). Optimization of planar three-electrode systems for redox system detection. Int. J. Electrochem. Sci., 7, 1785-801.

[30] Sedlak, P., Sikula, J., Sedlakova, V., Chvatal, M., Majzner, J., Vondra, M., Kubersky, P., Nespurek, S., Hamacek, A. (2013). Noise in amperometric NO2 sensor. 22nd International Conference on Noise and Fluctuations (ICNF) 2013 22nd International Conference on Noise and Fluctuations (ICNF), 1-4.

[31] Sedlak, P., Kubersky, P., Nespurek, S., Majzner, J., Macku, R., Skarvada, P., Sedlakova, V., Hamacek, A., Sikula, J. (2015). Investigation of adsorption-desorption phenomenon by using current fluctuations of amperometric NO2 gas sensor. 23nd International Conference on Noise and Fluctuations ICNF. 22nd International Conference on Noise and Fluctuations ICNF, Xian, China, IEEE, 1-4.

[32] Kubersky, P., Altšmid, J., Hamaček, A., Nešpůrek, S., Zmeškal, O. (2015). An Electrochemical NO2 Sensor Based on Ionic Liquid. Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity Sensors, 15(11), 28421−28434.

[33] Hassibi, A., Navid, R., Dutton, R.W., Lee, T.H. (2004). Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys., 96, 1074-82.

[34] Kuo, C.K., Brophy, J.J. (1988). A Review of Noise Studies in Superionic Electrolytes. DTIC Document.

[35] Punter, J., Colomer-Farrarons, J., Ll, P. (2013). Bioelectronics for Amperometric Biosensors State of the Art in Biosensors − General Aspects. Rinken, T. (ed). InTech.

[36] Sohn, K.S., Oh, S.J., Kim, E.J., Gim, J.M., Kim, N.S., Kim, Y.S., Kim, J.W. (2013) A Unified Potentiostat for Electrochemical Glucose Sensors. Trans. Electr. Electron. Mater., 14, 273-7.

[37] Sedlakova, V., Sikula, J., Chvatal, M., Pavelka, J., Tacano, M., Toita, M. (2012). Noise in Submicron Metal- Oxide-Semiconductor Field Effect Transistors: Lateral Electron Density Distribution and Active Trap Position. Jpn. J. Appl. Phys., 51, 024105.

[38] Katelhon, E., Krause, K.J., Mathwig, K., Lemay, S.G., Wolfrum, B. (2014). Noise Phenomena Caused by Reversible Adsorption in Nanoscale Electrochemical Devices ACS Nano, 8, 4924-30.

[39] Smulko, J., Darowicki, K., Wysocki, P. (1998). Digital measurement system for electrochemical noise. Polish Journal of Chemistry, 72(7), 1237−1241.

[40] Nadherna, M., Opekar, F., Reiter, J., Štulik, K. (2012). A planar, solid-state amperometric sensor for nitrogen dioxide, employing an ionic liquid electrolyte contained in a polymeric matrix. Sens. Actuators B Chem., 161, 811-7.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 272 271 28
PDF Downloads 89 89 6