A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

Open access

Abstract

Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

[1] Haglage, T.L., Wood, H.A. (1969). Scratch strain gage evaluation. Air Force Flight Dynamics Lab. Wright-Patterson Air Force Base, Ohio. Tech. Rep. AFFDL-TR-69-25.

[2] Khan, A.S., Wang, X.W. (2001). Metal-foil resistance strain gages. Strain measurements and Stress Analysis. New Jersey: Prentice Hall.

[3] Epsilon Tech. Co., Wyoming, USA. (2010). http://www.epsilontech.com/3542.htm

[4] Principles of Stresscoat, Brittle Coating for Experimental Stress Analysis, Oconomowoc, WI, USA. (2010). http://stresscoat.com/SCManual.pdf

[5] Khan, A.S., Wang, X.W. (2001). Photoelasticity. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.

[6] Khan, A.S., Wang, X.W. (2001). Photoelastic-coating method. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.

[7] Good practice guide to geometric moiré for in plane displacement or strain analysis. SPOTS Standard Part III (1), 2005, G6RD-CT-2002-00856.

[8] Khan, A.S., Wang, X.W. (2001). Holographic interferometry. Strain Measurements and Stress Analysis. New Jersey: Prentice Hall.

[9] Fein, H. (1997). Holographic Interferometry: Non-destructive tool. The Industrial Physicist, American Institute of Physics.

[10] Pan, B., Qian, K., Xie, H., Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Measurement Sci. and Tech., 20(6), 1−17.

[11] Sutton, M.A. (2008). Digital image correlation for shape and deformation measurements. Handbook of Experimental Solid Mechanics. New York: Springer.

[12] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 83.

[13] Huang, Y.H., (2004). Development of digital image correlation method for displacement and shape measurement. M.Sc. Thesis. Mech. Dept., National University of Singapore, Singapore.

[14] Giachetti, A. (2000). Matching techniques to compute image motion. Image Vis. Comput., 18, 247−260.

[15] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 95.

[16] Sutton, M.A., Orteu, J.J., Schreier, H.W. (2009). DIC. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer, 88.

[17] Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R. (1983). Determination of displacements using an improved digital image correlation method. Image Vis. Comput., 1(3), 133−139.

[18] Chu, T.C., Ranson, W.F., Sutton, M.A., Peters, W.H. (1985). Applications of digital image correlation techniques to experimental mechanics. Experimental Mechanics, 25(3), 232−244.

[19] Bruck, H.A., McNeill, S.R., Sutton, M.A., Peters, W.H. (1989). Digital image correlation using Newton- Raphson method of Partial Differential Correction. Experimental Mechanics, 29(3), 261−267.

[20] Lu, H., Cary, P.D. (2000). Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Experimental Mechanics, 40(4), 393−400.

[21] Cheng, P., Sutton, M.A., Schreier, H.W., McNeill, S.R. (2002). Full-field speckle pattern image correlation with B-Spline deformation function. Experimental Mechanics, 42(3), 344−352.

[22] Peters, W.H., Ranson, W.F. (1982). Digital imaging techniques in experimental stress analysis. Optics Eng., 21(3), 427−342.

[23] Sutton, M.A., Cheng, M.Q., Peters, W.H., Chao, Y.J., McNeill, S.R. (1986). Application of an optimized digital correlation method to planar deformation analysis. Image Vis. Comput., 4(3), 143−150.

[24] Hovis, G.L. (1989). Centroidal tracking algorithm for deformation measurements using gray scale digital images. Ph.D. dissertation. University of South Carolina, USA.

[25] Glover, C., Jones, H. (1994). Stress, strain and deformation in solids. Conservation Principles of Continuous Media. Texas: McGraw-Hill.

[26] Khoo, S.W., Karuppanan, S., Abdul Latif, M.R.B. (2013). Development of an optical strain measurement method using digital image correlation. Asian J. of Scientific Research, 6(3), 411−422.

[27] Chen, D.J., Chiang, F.P., Tan, Y.S., Don, H.S. (1993). Digital speckle displacement measurement using a complex spectrum method. Applied Optics, 32(11), 1839−1849.

[28] Vendroux, G., Knauss, W.G. (1998). Submicron deformation field measurements: Part 2. Improved digital image correlation. Experimental Mechanics, 38(2), 86−92.

[29] Hung, P.C., Voloshin, A.S. (2003). In-plane strain measurement by digital image correlation. J. of the Brazilian Soc. of Mech. Sci. and Eng., 25(3), 215−221.

[30] Zhang, Z.F., Kang, Y.L., Wang, H.W., Qin, Q.H., Qiu, Y., Li, X.Q. (2006). A novel coarse-fine search scheme for digital image correlation method. Measurement, 39(8), 710−718.

[31] Paepegem, W.V., Shulev, A.A., Roussev, I.R., Pauw, S.D., Degrieck, J., Sainov, V.C. (2009). Study of the deformation characteristics of window security film by digital image correlation techniques. Optics and Lasers in Eng., 47(3−4), 390−397.

[32] Pan, B. (2009). Reliability-guided digital image correlation for image deformation measurement. Applied Optics, 48(8), 1535−1542.

[33] Pan, B., Li, K. (2011). A fast digital image correlation method for deformation measurement. Optics and Lasers in Eng., 49(7), 841−847.

[34] Pan, B., Li, K., Tong, W. (2013). Fast, robust and accurate digital image correlation calculation without redundant computations. Experimental Mechanics, 53(7), 1277−1289.

[35] Zhou, Y.H., Chen, Y.Q. (2012). Propagation function for accurate initialization and efficiency enhancement of digital image correlation. Optics and Lasers in Eng., 50(12), 1789−1797.

[36] Pan, B., Wu, D.F., Yong, X. (2012). Incremental calculation for large deformation measurement using reliability-guided digital image correlation. Optics and Lasers in Eng., 50(4), 586−592.

[37] Guo, X., Liang, J., Xiao, Z.Z., Cao, B.B. (2014). Digital image correlation for large deformation applied in Ti alloy compression and tension test. Optik, 125(18), 5316−5322.

[38] Jiang, L.B., Xie, H.M., Pan, B. (2015). Speeding up digital image correlation computation using the integral image technique. Optics and Lasers in Eng., 65, 117−122.

[39] Mathworks, Integral Image. (2012). http://www.mathworks.com/help/vision/ref/integralimage.html

[40] Shao, X.X., Dai, X.J., He, X.Y. (2015). Noise robustness and parallel computation of the inverse compositional gauss-newton algorithm in digital image correlation. Optics and Lasers in Eng., 71, 9−19.

[41] Meng, L.B., Jin, G.C., Yao, X.F. (2007). Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Optics and Lasers in Eng., 45(1), 57−63.

[42] Cofaru, C., Philips, W., Paepegem, W.V. (2010). Improved Newton-Raphson digital image correlation method for full-field displacement and strain calculation. J. of Applied Optics, 49(33), 6472−6484.

[43] Cofaru, C., Philips, W., Paepegem, W.V. (2012). A novel speckle pattern-Adaptive digital image correlation approach with robust strain calculation. Optics and Lasers in Eng., 50(2), 187−198.

[44] Pan, B. (2013). Bias error reduction of digital image correlation using Gaussian pre-filtering. Optics and Lasers in Eng., 51(10), 1161−1167.

[45] Gonzalez, R.C., Woods, R.E., Eddins, S.L. (2004). Frequency domain processing. Digital Image Processing using MATLAB, New Jersey: Pearson Prentice Hall.

[46] Zhou, Y.H., Sun, C., Chen, J.B. (2014). Adaptive subset offset for systematic error reduction in incremental digital image correlation. Optics and Lasers in Eng., 55, 5−11.

[47] Yuan, Y., Huang, J.Y., Fang, J., Yuan, F., Xiong, C.Y. (2015). A self-adaptive sampling digital image correlation algorithm for accurate displacement measurement. Optics and Lasers in Eng., 65, 57−63.

[48] Mazzoleni, P., Matta, F., Zappa, E., Sutton, M.A., Cigada, A. (2015). Gaussian pre-filtering for uncertainty minimization in DIC using numerical-designed speckle patterns. Optics and Lasers in Eng., 66, 19−33.

[49] Sutton, M.A., McNeill, S.R., Jang, J., Babai, M. (1988). Effects of subpixel image restoration on digital correlation error estimates. Optics Eng., 27(10), 870−877.

[50] Schreier, H.W., Braasch, J.R., Sutton, M.A. (2000). Systematic errors in digital image correlation caused by intensity interpolation. Optics Eng., 39(11), 2915−2921.

[51] Schreier, H.W., Sutton, M.A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 42(3), 303−310.

[52] Wang, C.B., Deng, J.M., Ateshian, G.A., Hung, T. (2002). An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression. J. of Biomechanical Eng., 124(5), 557−567.

[53] Zhang, J., Jin, G.C., Ma, S.P., Meng, L.B. (2003). Application of an improved subpixel registration algorithm on digital speckle correlation measurement. Optics and Laser Tech., 35(7), 533−542.

[54] Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., Habraken, A.M. (2006). Quality assessment of speckle patterns for DIC. Optics and Lasers in Eng., 44(11), 1132−1145.

[55] Sun, Y.F., Pang, H.L. (2007). Study of optimal subset size in digital image correlation of speckle pattern images. Optics and Lasers in Eng., 45(9), 967−974.

[56] Haddadi, H., Belhabib, S. (2008). Use of rigid-body motion for the investigation and estimation of the measurement errors related to DIC technique. Optics and Lasers in Eng., 46(2), 185−196.

[57] Sutton, M.A., Yan, J.H., Tiwari, V., Scheier, H.W., Orteu, J.J. (2008). The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Optics and Lasers in Eng., 46(10), 746−757.

[58] Jerabek, M., Major, Z., Lang, R.W. (2010). Strain determination of polymeric materials using digital image correlation. Polymer Testing, 29(3), 407−416.

[59] Liu, X.Y., Tan, Q.C., Xiong, L., Liu, G.D., Liu, J.Y., Yang, X., Wang, C.Y. (2012). Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation. Optics and Laser Tech., 44(4), 1060−1067.

[60] Crammond, G., Boyd, S.W., Barton, J.M.D. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Eng., 51(12), 1368−1378.

[61] Hoult, N.A., Take, W.A., Lee, C., Dutton, M. (2013). Experimental accuracy of two-dimensional strain measurement using digital image correlation. Eng. Structures, 46, 718−726.

[62] Pan, B., Yu, L.P., Wu, D.F., Tang, L.Q. (2013). Systematic errors in two-dimensional digital image correlation due to lens distortion. Optics and Lasers in Eng., 51(2), 140−147.

[63] Dufour, J.E., Hild, F., Roux, S. (2014). Integrated digital image correlation for the evaluation and correction of optical distortions. Optics and Lasers in Eng., 56, 121−133.

[64] Zappa, E., Mazzoleni, P., Matinmanesh, A. (2014). Uncertainty assessment of digital image correlation method in dynamic applications. Optics and Lasers in Eng., 56, 140−151.

[65] Zappa, E., Matinmanesh, A., Mazzoleni, P. (2014). Evaluation and improvement of digital image correlation uncertainty in dynamics conditions. Optics and Lasers in Eng., 59, 82−92.

[66] Peters, W.H., Sutton, M.A., Ranson, W.F., Poplin, W.P., Walker, D.M. (1989). Whole-field experimental displacement analysis of composite cylinders. Experimental Mechanics, 29(1), 58−62.

[67] McNeill, S.R., Sutton, M.A., Miao, Z., Ma, J. (1997). Measurement of surface profile using digital image correlation. Experimental Mechanics, 37(1), 13−20.

[68] Wang, Y., Cuitino, A.M. (2002). Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int. J. of Solids and Structures, 39(13−14), 3777−3796.

[69] Zhang, J., Cai, Y.X., Ye, W.J., Yu, T.X. (2011). On the use of the digital image correlation method for heterogeneous deformation of porous solid. Optics and Lasers in Eng., 49(2), 200−209.

[70] Fayyad, T.M., Lees, J.M. (2014). Application of digital image correlation to reinforced concrete fracture. Procedia Materials Science, 3, 1585−1590.

[71] Wattrisse, B., Chrysochoos, A., Muracciole, J.M., Nemoz-Gaillard, M. (2000). Analysis of strain localization during tensile tests by digital image correlation. Experimental Mechanics, 41(1), 29−39.

[72] Savic, V., Hector, L.G., Fekete, J.R. (2008). Digital image correlation study of plastic deformation and fracture in fully martensitic steels. Experimental Mechanics, 50(1), 99−110.

[73] Wang, Z.Y., Li, H.Q., Tong, J.W., Shen, M., Aymerich, F., Priolo, P. (2008). Dual magnification digital image correlation based strain measurement in CFRP Laminates with open hole. Composites Sci. and Tech., 68(9), 1975−1980.

[74] Yang, G., Cai, Z.X., Zhang, X.C., Fu, D.H. (2015). An experimental investigation on the damage of granite under uniaxial tension by using a digital image correlation method. Optics and Lasers in Eng., 73, 46−52.

[75] McNeill, S.R., Peters, W.H., Sutton, M.A. (1987). Estimation of stress intensity factor by digital image correlation. Eng. Fracture Mechanics, 28(1), 101−112.

[76] Abanto-Bueno, J., Lambros, J. (2002). Investigation of crack growth in functionally graded materials using digital image correlation. Eng. Fracture Mechanics, 69(14−16), 1695−1711.

[77] Roux, S., Hild, F. (2006). Stress intensity factor measurements from digital image correlation: postprocessing and integrated approaches. Int. J. of Fracture, 140(1−4), 141−157.

[78] Lopez-Crespo, P., Shterenlikht, A., Patterson, E.A., Yates, J.R., Withers, P.J. (2008). The stress intensity of mixed mode cracks determined by digital image correlation. J. of Strain Analysis, 43(8), 769−780.

[79] Kanchanomai, C., Yamamoto, S., Miyashita, Y., Mutoh, Y., McEvily, A.J. (2002). Low cycle fatigue test for solders using non-contact digital image measurement system. Int. J. of Fatigue, 24, 57−67.

[80] Tao, G., Xia, Z.H. (2005). A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by DIC method. Polymer Testing, 24(7), 844−855.

[81] Risbet, M., Feissel, P., Roland, T., Brancherie, D., Roelandt, J.M. (2010). Digital image correlation technique: application to early fatigue damage detection in stainless steel. Procedia Eng., 2(1), 2219−2227.

[82] Poncelet, M., Barbier, G., Raka, B., Courtin, S., Desmorat, R., Le-Roux, J.C., Vincent, L. (2010). Biaxial high cycle fatigue of a type 304L stainless steel: cyclic strains and crack initiation detection by digital image correlation. European J. of Mechanics A/Solids, 29(5), 810−825.

[83] Carroll, J., Efstathiou, C., Lambros, J., Sehitoglu, H., Hauber, B., Spottswood, S., Chona, R. (2009). Investigation of fatigue crack closure using multiscale image correlation experiments. Eng. Fracture Mechanics, 76(15), 2384−2398.

[84] Yusof, F., Lopez-Crespo, P., Withers, P.J. (2013). Effect of overload on crack closure in thick and thin specimens via digital image correlation. Int. J. of Fatigue, 56, 17−24.

[85] Mathieu, F., Hild, F., Roux, S. (2013). Image-based identification procedure of a crack propagation law. Eng. Fracture Mechanics, 103, 48−59.

[86] Srilakshmi, R., Ramji, M., Chinthapenta, V. (2015). Fatigue crack growth study of CFRP patch repaired Al 2014-T6 panel having an inclined center crack using FEA and DIC. Eng. Fracture Mechanics, 134, 182−201.

[87] Roux-Langlois, C., Gravouil, A., Baietto, M.C., Rethore, J., Mathieu, F., Hild, F., Roux, S. (2015). DIC identification and X-FEM simulation of fatigue crack growth based on the Williams’ series. Int. J. of Solids and Structures, 53, 38−47.

[88] Zhang, S.Q., Mao, S.S., Arola, D., Zhang, D.S. (2014). Characterization of the strain life fatigue properties of thin sheet metal using an optical extensometer. Optics and Lasers in Eng., 60, 44−48.

[89] Lopez-Crespo, P., Moreno, B., Lopez-Moreno, A., Zapatero, J. (2015). Characterization of crack-tip fields in biaxial fatigue based on high-magnification image correlation and electro-spray technique. Int. J. of Fatigue, 71, 17−25.

[90] Hild, F., Roux, S. (2006). Digital image correlation: From displacement measurement to identification of elastic properties. Strain, 42(2), 69−80.

[91] Sutton, M.A., Chao, Y.J. (1988). Measurement of strains in a paper tensile specimen using computer vision and digital image correlation: Part 1 Data acquisition and image analysis system. Tappi J., 70(3), 153−155.

[92] Choi, D., Thorpe, J.L., Hanna, R.B. (1991). Image analysis to measure strain in wood and paper. Wood Sci. and Tech., 25(4), 251−262.

[93] Huang, Y.H., Liu, L., Sham, F.C., Chan, Y.S., Ng, S.P. (2010). Optical strain gauge vs. traditional strain gauges for concrete elasticity modulus determination. Optics, 121(18), 1635−1641.

[94] Sanchez-Arevalo, F.M., Garcia-Fernandez, T., Pulos, G., Villagran-Muniz, M. (2009). Use of digital speckle pattern correlation for strain measurements in a CuAlBe shape memory alloy. Materials Characterization, 60(8), 775−782.

[95] Tung, S.H., Shih, M.H., Kuo, J.C. (2010). Application of digital image correlation for anisotropic plastic deformation during tension testing. Optics and Lasers in Eng., 48(5), 636−641.

[96] Rethore, J., Roux, S., Hild, F. (2007). From pictures to extended finite elements: extended digital image correlation (X-DIC). C. R. Mecanique, 335(3), 131−137.

[97] Ferreira, M.D.C., Venturini, W.S., Hild, F. (2011). On the analysis of notched concrete beams: From measurement with digital image correlation to identification with boundary element method of a cohesive model. Eng. Fracture Mechanics, 78(1), 71−84.

[98] Wang, W.Z., Mottershead, J.E., Sebastian, C.M., Patterson, E.A. (2011). Shape features and finite element model updating from full-field strain data. Int. J. of Solids and Structures, 48(11−12), 1644−1657.

[99] Sozen, S., Guler, M. (2011). Determination of displacement distributions in bolted steel tension elements using digital image techniques. Optics and Lasers in Eng., 49(12), 1428−1435.

[100] Roux, S., Hild, F., Leclerc, H. (2012). Mechanical assistance to DIC. Procedia IUTAM, 4, 159−168.

[101] Deb, D., Bhattacharjee, S. (2015). Extended digital image correlation method for analysis of discrete discontinuity. Optics and Lasers in Eng., 74, 59−66.

[102] Leclerc, H., Perie, J.N., Roux, S., Hild, F. (2009). Integrated digital image correlation for the identification of mechanical properties. Computer Vision/Computer Graphics Collaboration Techniques, 5496, 161−171.

[103] Dong, Y.L., Kakisawa, H., Kagawa, Y. (2015). Development of microscale pattern for digital image correlation up to 1400°C. Optics and Lasers in Eng., 68, 7−15.

[104] Lyons, J.S., Liu, J., Sutton, M.A. (1996). High-temperature deformation measurements using digital image correlation. Experimental Mechanics, 36(1), 64−70.

[105] Grant, B.M.B., Stone, H.J., Withers, P.J., Preuss, M. (2009). High-temperature strain field measurement using digital image correlation. J. of Strain Analysis, 44(4), 263−271.

[106] Pan, B., Wu, D.F., Xia, Y. (2010). High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Optics and Lasers in Eng., 48(9), 841−848.

[107] Wu, W., Peters, W.H., Hammer, M.E. (1987). Basic mechanical properties of retina in simple elongation J. of Biomechanical Eng., 109(1), 65−67.

[108] Hjortdal, J., Jensen, P.K. (1995). In vitro measurement of corneal strain, thickness, and curvature using digital image correlation. Acta Ophthalmol Scandinavica, 73(1), 5−11.

[109] Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M. (2009). Algorithms for digital image processing in diabetic retinopathy. Computerized Medical Imaging and Graphics, 33(8), 608−622.

[110] Lee, J.J., Shinozuka, M. (2006). Real time displacement measurement of a flexible bridge using digital image processing techniques. Experimental Mechanics, 46(1), 105−114.

[111] Reu, P.L., Miller, T.J. (2008). The application of high-speed digital image correlation. J. of Strain Analysis, 43(8), 673−688.

[112] Xu, X., Wang, K.F., Gu, G.Q. (2013). An improved method for shape measurement using two-dimensional digital image correlation. Optics, 124(20), 4097−4099.

[113] Sun, Z.L., Lyons, J.S., McNeill, S.R. (1997). Measuring microscopic deformations with digital image correlation. Optics and Lasers in Eng., 27(4), 409−428.

[114] Vendroux, G., Knauss, W.G. (1998). Submicron deformation field measurements: Part I Developing a digital scanning tunnelling microscope. Experimental Mechanics, 38(1), 18−23.

[115] Vendroux, G., Schmidt, N., Knauss, W.G. (1998). Submicron deformation field measurements: Part III Demonstration of deformation determinations. Experimental Mechanics, 38(3), 154−160.

[116] Sutton, M.A., Li, N., Garcia, D., Cornille, N., Orteu, J.J., McNeill, S.R., Schreier, H.W., Li, X.D. (2006). Metrology in a scanning electron microscope: theoretical developments and experimental validation. Measurement Sci. and Tech., 17(10), 2613−2622.

[117] Jin, H., Lu, W.Y., Korellis, J. (2008). Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J. of Strain Analysis, 43(8), 719−728.

[118] Ya’akobovitz, A., Krylov, S., Hanein, Y. (2010). Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and DIC. Sensors and Actuators A:Physical, 162(1), 1−7.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 488 488 45
PDF Downloads 255 255 33