Improving Segmentation of 3D Retina Layers Based on Graph Theory Approach for Low Quality OCT Images

Open access

Abstract

This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. The paper draws attention to the problems that occur during the computer image processing of images obtained with the use of the Spectral Domain Optical Coherence Tomography (SD OCT). Accuracy of the retinal layer segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans obtained with the OCT Copernicus HR device.

[1] Rogalski, A., Chrzanowski, K. (2014). Infrared Devices And Techniques (Revision). Metrol. Meas. Syst., 21(4), 565-618.

[2] Antoniuk, P., Strąkowski, M.R., Pluciński, J., Kosmowski, B.B. (2012). Non-Destructive Inspection Of Anti- Corrosion Protective Coatings Using Optical Coherent Tomography. Metrol. Meas. Syst., 19(2), 365‒372.

[3] Yaqoob, Z., Wu, J., Yang, C. (2005). Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques, 39 (6 Suppl), 6‒13, DOI: 10.2144/000112090.

[4] SOCT Copernicus HR. (2011). User Manual Software Version 4.3.0 User Manual rev. A. Optopol.

[5] RTVue XR 100 Avanti Edition (2014). Podręcznik użytkownika. Optovue Inc.

[6] Fabritius, T., Makita, S., et al. (2009). Automated segmentation of the macula by optical coherence tomography. Opt. Express, 17(18), 15659-15669.

[7] Yazdanpanah, A., Hamarneh, G., Smith, B., Sarunic, M. (2009). Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach. Proc. of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention: Part II, Springer-Verlag, 5762, 649-656.

[8] Kajic, V., Povazay, B., Hermann, B., Hofer, B., Marshall, D., Rosin, P.L., Drexler, W. (2010). Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Optics Express, 18(14), 14730-14744.

[9] Garvin, M.K., Abramoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M. (2008). Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search. IEEE Transactions on Medical Imaging, 27(10), 1495-1505.

[10] Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S. (2010). Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express, 18(18), 19413-19428.

[11] Teng, P. (2013). Caserel ‒ An Open Source Software for Computer-aided Segmentation of Retinal Layers in Optical Coherence Tomography Images. Zenodo, DOI: 10.5281/zenodo.17893.

[12] Cha, Y.M., Han, J.H. (2014). High-Accuracy Retinal Layer Segmentation for Optical Coherence Tomography Using Tracking Kernels Based on Gaussian Mixture Model. IEEE Journal of Selected Topics in Quantum Electronics, 20(2).

[13] Szkulmowski, M., Wojtkowski, M., Sikorski, B., Bajraszewski, T., Srinivasan, V.J., Szkulmowska, A., Kaluzny, J.J., Fujimoto, J.G., Kowalczyk, A. (2007). Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. Journal of Biomedical Optics, 12(4).

[14] Szkulmowski, M., Wojtkowski, M. (2013). Averaging techniques for OCT imaging. OPTICS EXPRESS, 21(8), 9757‒9773.

[15] Ishikawa, H., Stein, D.M., et al. (2005). Macular segmentation with optical coherence tomography. Invest. Ophthalmol. Vis. Sci., 46(6), 2012-2017.

[16] Ehnes, A., Wenner, Y., Friedburg, C., Preising, M.N., Bowl, W., Sekundo, W., Meyer zu Bexten, E., Stieger, K., Lorenz, B. (2014). Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation. Trans. Vis. Sci. Tech., 3(1).

[17] Fernandez, D.C., et al. (2005). Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express, 13(25), 10200-10216.

[18] Stein, D. M., et al. (2015). A New Quality Assessment Parameter for Optical Coherence Tomography. The British Journal of Ophthalmology, 90.2, 186-190.

[19] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271.

[20] Shi, J., Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8), 888-905.

[21] Stankiewicz, A., Marciniak, T., Dąbrowski, A., Stopa, M., Marciniak, E. (2014). A New OCT-based Method to Generate Virtual Maps of Vitreomacular Interface Pathologies. Proc. of SPA 2014: Signal Processing Algorithms, Architectures, Arrangements, and Applications Conference, 83‒88.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 20
PDF Downloads 17 17 6