Hydrogen Detection With a Gas Sensor Array – Processing and Recognition of Dynamic Responses Using Neural Networks

Open access

Abstract

An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to distinct resistance responses affected by the gas type, its concentration and the humidity level. The measurements are performed upon various hydrogen (17-3000 ppm), methane (167-3000 ppm) and propane (167-3000 ppm) concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual gases.

References

  • [1] Barsan, N., Koziej, D., Weimar, U., (2007). Metal oxide-based gas sensor research: How to? Sensor.Actuat. B-Chem., (121), 18-35.

  • [2] Wang, C., Yin, L., Zhang, L., Xiang, D., Gao, R., (2010). Metal Oxide Gas Sensors: Sensitivity and influencing factors. Sensors, (10), 2088-2106.

  • [3] Sobański, T., Szczurek, A., Nitsch, K., Licznerski, B.W., Radwan, W., (2006). Electronic nose applied to automotive fuel qualification. Sensor. Actuat. B-Chem., (116), 207-212.

  • [4] Szczurek, A., Maciejewska, M., (2004). Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifier. Talanta, (64), 609-617.

  • [5] Gwiżdż, P., Brudnik, A., Zakrzewska, K., (2012). Temperature modulated response of gas sensors array - humidity interference. Proc. Eng., (47), 1045-1048.

  • [6] Gwiżdż, P., Brudnik, A., Zakrzewska, K., (2012). Temperature-modulated gas sensor array. Microelectron.Mater. Technol., Wydawnictwo Uczelniane Politechniki Koszalińskiej, (1), 196-206.

  • [7] An, W., Yang, C., (2012). Review on temperature modulation technology of gas sensors. App. Mech.Mater., (143-144), 567-571.

  • [8] Shi, Z. B., Yu, T., Zhao, Q., Li, Y., Lan, Y. B., (2008). Comparison of Algorithms for an Electronic Nose in Identifying Liquors. J. Bio. Eng., (5), 253-257.

  • [9] Lyson-Sypien, B., Czapla, A., Lubecka, M., Gwizdz, P., Schneider, K., Zakrzewska, K., Michalow, K., Graule, T., Reszka, A., Rekas, M., Lacz, A., Radecka, M., (2012). Nanopowders of chromium doped TiO2 for gas sensors. Sensor. Actuat. B-Chem., (175), 163-172.

  • [10] Jasiński, P., Suzuki, T., Anderson, H. U., (2003). Nanocrystalline undoped ceria oxygen sensor. Sensor.Actuat. B-Chem., (95), 73-77.

  • [11] Calavia, R., Mozalev, A., Vazquez, R., Gracia, I., Cane, C., Ionescu, R., Llobet, E., (2010). Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sensor. Actuat. B-Chem., (149), 352-361.

  • [12] Koziej, D., Barsan, N., Weimar, U., Szuber, J., Shimanoe, K., Yamazoe, N., (2005). Water-oxygen interplay on tin dioxide surface: Implication on gas sensing. Chem. Phys. Lett., (410), 321-323.

  • [13] Neri, G., Bonavita, A., Pizzo, G., Galvagno, S., Donato, N., Caputi, L.S., (2004). A study of water influence on CO response on gold-doped iron oxide sensors. Sensor. Actuat. B-Chem., (101), 90-96.

  • [14] Balasubramaniana, S., Panigrahi, S., Logue, C.M., Gu, H., Marchello, M., (2009). Neural networksintegrated metal oxide-based artificial olfactory system for meat spoilage identification. J. Food Eng., (91), 91-98.

  • [15] Lee, D.S., Ban, S.W., Lee, M., Lee, D.D., (2005). Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sensor. J., (5), 530-536.

  • [16] Kermani, B.G., Schiffman, S.S., Nagle H.T., (2005). Performance of the Levenberg-Marquardt neural network training method in electronic nose applications. Sensor. Actuat. B-Chem., (110), 13-22.

  • [17] Pławiak, P., Maziarz, W., (2014). Classification of tea specimens using novel hybrid artificial intelligence methods. Sensor. Actuat. B-Chem., (192) 117-125.

  • [18] Ortega, A., Marco, S., Perera, A., Šundic, T., Pardo A., Samitier J., (2001). An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor. Sensor. Actuat. B-Chem., (78), 32-39.

  • [19] Nakata, S., Okunishi, H., Nakashima, Y., (2006). Distinction of gases with a semiconductor sensor under a cyclic temperature modulation with second-harmonic heating. Sensor. Actuat. B-Chem., (119) 556-561.

  • [20] Ionescu, R., Llobet, E., (2002). Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors. Sensor. Actuat. B-Chem., (81) 289-295.

  • [21] Huang, X. J., Choi, Y. K., Yun, K. S., Yoon, E., (2006). Oscillating behaviour of hazardous gas on tin oxide gas sensor: Fourier and wavelet transform analysis. Sensor. Actuat. B-Chem., (115) 357-364.

  • [22] Szecowka, P. M., Szczurek, A., Licznerski, B.W., (2011). On reliability of neural network sensitivity analysis applied for sensor array optimization. Sensor. Actuat. B-Chem., (157) 298-303.

  • [23] Ngo, K. A., Lauque, P., Aguir, K., (2007). High performance of a gas identification system using sensor array and temperature modulation. Sensor. Actuat. B-Chem., (124) 209-216.

  • [24] Huang, J. R., Gu, C. P., Meng, F. L., Li, M. Q., Liu, J. H., (2007). Detection of volatile organic compounds by using a single temperature-modulated SnO2 gas sensor and artificial neural network. Sensors, (16) 209-216.

  • [25] Technical data about the UST GGS sensors published on http://www.umweltsensortechnik.de (May 2013).

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 17
PDF Downloads 14 14 10