In Situ Measurements of Atmospheric CO And Its Correlation With Nox And O3 at a Rural Mountain Site

Open access


Ambient concentrations of CO, as well as NOx and O3, were measured as a part of the PARADE campaign conducted at the Taunus Observatory on the summit of the Kleiner Feldberg between the 8th of August and 9th of September 2011. These measurements were made in an effort to provide insight into the characteristics of the effects of both biogenic and anthropogenic emissions on atmospheric chemistry in the rural south-western German environment. The overall average CO concentration was found to be 100.3±18.1 ppbv (within the range of 71 to 180 ppbv), determined from 10-min averages during the summer season. The background CO concentration was estimated to be ~90 ppbv. CO and NOx showed bimodal diurnal variations with peaks in the late morning (10:00-12:00 UTC) and in the late afternoon (17:00-20:00 UTC). Strong correlations between CO and NOx indicated that vehicular emission was the major contributor to the notable CO plumes observed at the sampling site. Both local meteorology and backward trajectory analyses suggest that CO plumes were associated with anthropogenically polluted air masses transferred by an advection to the site from densely populated city sites. Furthermore, a good linear correlation of R2 = 0.54 between CO and O3 (∆O3/∆CO=0.560±0.016 ppbv/ppbv) was observed, in good agreement with previous observations


  • [1] Chameides, W., Walker, J. C. (1973). A photochemical theory of tropospheric ozone. J.Geophys.Res.- Atmos., 78, 8751‒8760.

  • [2] Logan, J. A., Prather, M. J., Wofsy, S. C., Mcelroy, M. B. (1981). Tropospheric chemistry - a global perspective. J. Geophys. Res.-Oceans, 86, 7210‒7254.

  • [3] Thompson, A. M. (1992). The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science, 256, 1157‒1165.

  • [4] Novelli, P. C., Steele, L. P., Tans, P. P. (1992). Mixing ratios of carbon monoxide in the troposphere.J. Geophys. Res.-Atmos., 97, 20731‒20750.

  • [5] Graedel T. E., McRae J. E. (1980). On the possible increase of the atmospheric methane and carbon monoxide concentrations during the last decade. Geophys. Res. Lett., 7, 977‒979.

  • [6] Thompson A. M., Cicerone, R. J. (1986). Possible perturbations to atmospheric CO, CH4, and OH.J. Geophys. Res. - Atmos., 91, 10853‒10864.

  • [7] Wofsy, S. C. (1976). Interactions of CH4 and CO in the Earth's atmosphere. Annu. Rev. Earth Pl. Sci., 4, 441‒469.

  • [8] Sze, N. D. (1977). Anthropogenic CO emissions: Implications for the atmospheric CO-OH-CH4 cycle.Science, 195, 673‒675.

  • [9] Novelli, P. C. (1999). CO in the atmosphere: measurement techniques and related issues. Chemosphere: Global Change Sci., 1, 115‒126.

  • [10] Heszler, P., Ionescu, R., Llobet, E., Reyes, L. F., Smulko, J. M., Kish, L. B., and Granqvist, C. G. (2007).On the selectivity of nanostructured semiconductor gas sensors. Physica Status Solidi (b), 244, 4331‒4335.

  • [11] Zellweger, C., Steinbacher, M., Buchmann, B., (2012) Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements, Atmos. Meas. Tech., 5, 2555‒2567.

  • [12] Fried, A., Diskin, G., Weibring, P., Richter, D., Walega, J.G., Sachse, G., Slate, T., Rana, M., Podolske, J. (2008). Tunable infrared laser instruments for airborne atmospheric studies. Appl. Phys. B 92, 409‒417.

  • [13] Wienhold, F. G., Fischer, H., Hoor, P., Wagner, V., Königstedt, R., Harris, G. W., Anders, J., Grisar, R., Knothe, M., W. Riedel, J., Lübken, F.-J., Schilling, T. (1998). TRISTAR-a tracer in situ TDLAS for atmospheric research. Appl. Phys. B, 67, 411‒417.

  • [14] Williams, J., Fischer, H., Hoor, P., Pöschl, U., Crutzen, P.J., Andreae, M.O., Lelieveld, J. (2001). The influence of the tropical rainforest on atmospheric CO and CO2 as measured by aircraft over Surinam, South America. Chemosphere: Global Change Sci., 3, 157‒170.

  • [15] Provencal, R., Gupta, M., Owano, T. G., Baer, D. S., Ricci, K. N., O’Keefe, A., Podolske, J. R. (2005).Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements. Appl. Opt., 44, 6712‒6717.

  • [16] Schiller, C. L., Bozem, H., Gurk, C., Parchatka, U., Königstedt, R., Harris, G. W., Lelieveld, J., Fischer, H. (2008). Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Appl. Phys. B, 92, 419‒430.

  • [17] Viciani, S., D’amato, F., Mazzinghi, P., Castagnoli, F., Toci, G., Werle, P. (2008). A cryogenically operated laser diode spectrometer for airborne measurement of stratospheric trace gases. Appl. Phys. B, 90, 581‒592.

  • [18] Weidmann, D., Wysocki, G., Oppenheimer, C., Tittel, F. K. (2004). Development of a compact quantum cascade laser spectrometer for field measurements of CO2 isotopes. Appl. Phys. B, 80, 255‒260.

  • [19] Wada, R., Pearce, J. K., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., Shibata, T. (2011).Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy. Atmos. Environ., 45, 1168‒1174.

  • [20] Vanderover, J., Oehlschlaeger, M. A. (2010). A mid-infrared scanned-wavelength laser absorption sensor for carbon monoxide and temperature measurements from 900 to 4000 K. Appl. Phys. B, 99, 353‒362.

  • [21] Moeskops, B. W. M., Naus, H., Cristescu, S. M., Harren, F. J. M. (2006). Quantum cascade laser-based carbon monoxide detection on a second time scale from human breath. Appl. Phys. B, 82, 649‒654.

  • [22] Li, J. S., Parchatka, U., Königstedt, R., Fischer, H. (2012). Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt. Express, 20, 7590‒7601.

  • [23] Werle, P., Mazzinghi, P., D’Amato, F., De Rosa, M., Maurer, K., Slemr, F. (2004). Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. Spectrochim. Acta Part A, 60, 1685‒1705.

  • [24] Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J. P. (2009). The HITRAN 2008 molecular spectroscopic database.J Quant. Spectrosc. Radiat. Transfer, 110, 533‒572.

  • [25] Li, J. S., Parchatka, U., Fischer, H. (2012). Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements. Appl. Phys. B, 108, 951‒963.

  • [26] Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H., Bonn, B., Bingemer, H., Lelieveld, J. (2010). Nocturnal nitrogen oxides at a rural mountain-site in south-western Germany. Atmos. Chem. Phys., 10, 2795‒2812.

  • [27] Hosaynali Beygi, Z., Fischer, H., Harder, H. D., Martinez, M., Sander, R., Williams, J., Brookes, D. M., Monks, P. S., Lelieveld, J. (2011). Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state. Atmos. Chem. Phys., 11, 8497‒8513.

  • [28] Hastie, D. R., Shepson, P. B., Reid, N., Roussel, P. B., Melo, O. T. (1996). Summertime NOx, NOy, and ozone at a site in rural Ontario. Atmos. Environ., 30, 2157‒2165.

  • [29] Browne, E. C., Cohen, R. C. (2012). Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions. Atmos. Chem. Phys., 12, 11917‒11932.

  • [30] Aneja, D.S. Kim, W.L. (1997). Chameides, Trends and analysis of ambient NO, NOy, CO, and Ozone concentrations in Raleigh, North Carolina. Chemosphere, 34, 611‒623.

  • [31] Becker, K. H., Lörzer, J. C., Kurtenbach, R., Wiesen, P., Jensen, T. E., Wallington, T. J. (1999). Nitrous Oxide (N2O) Emissions from Vehicles. Environ. Sci. Technol., 33, 4134‒4139.

  • [32] Fischer, H., Nikitas, C., Parchatka, U., Zenker, T., Harris, G. W., Matuska, P., Schmitt, R., Mihelcic, D., Muesgen, P., Paetz, H.-W., Schultz, M., Volz-Thomas, A. (1998). Trace gas measurements during the Oxidizing Capacity of the Tropospheric Atmosphere campaign 1993 at Izaña. J. Geophys. Res.-Atmos., 103, 13505‒13518.

  • [33] Parrish, D. D., Buhr, M. P., Trainer, M., Norton, R. B., Shimshock, J. P., Fehsenfeld, F. C., Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V.C., Olszyna, K. J., Bailey, E. M., Rodgers, M. O., Wang, T., Berresheim, H., Roychowdhury, U. K., Demerjiani, K. L. (1993). The total reactive nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America. J. Geophys. Res.-Atmos., 98, 2927‒2939.

  • [34] Chin, M., Jacob, D. J., Munger, J. W., Parrish, D. D., Doddridge, B. G. (1994). Relationship of ozone and carbon monoxide over North America. J. Geophys. Res.-Atmos., 99, 14565‒14573.

  • [35] Wofsy, S. C., Sachse, G. W., Gregory, G. L., Blake, D. R., Bradshaw, J. D., Sandholm, S. T., Singh, H. B., Barrick, J. A., Harriss, R. C., Talbot, R. W. (1992). Atmospheric Chemistry in the Arctic and Subarctic: Influence of Natural Fires, Industrial Emissions, and Stratospheric Inputs, J. Geophys. Res. - Atmos., 97, 16731‒16746.

  • [36] Mauzerall, D. L., Jacob, D. J., Fan, S. -M., Bradshaw, J. D., Sandholm, S. T., Blake, D. R., Gregory, G. L., Sachse, G. W. (1993). An ozone budget for the remote troposphere over eastern Canada. Eos Trams.AGU, 74, Fall Meeting Supplement 74,180. San Francisco, USA.

  • [37] Zhang, L., Jacob D., Bowman, K., Logan, J. A., Turquety, S., Hudman, R. C., Li, Q., Beer, R., Worden, H., Worden, J., Rinsland, C. P., Kulawik, S. S., Lampel, M. C., Shephard, M. W., Fisher, B. M., Eldering, A., Avery, M. (2006). Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions. Geophys. Res. Lett., 33, L18804.

  • [38] Wetter, T. (1998). Eine Untersuchung zur Charakterisierung der Zeitlichen Variabilität det luftchemischen Bedingungen am Taunus-Observatorium: Messungen des CO und H2 Mischverhältnises im Winter 1996/7.Johan Wolfgang Goethe-Universität, Fachbereich Geowissenschaft, Frankfurt am Main.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 14
PDF Downloads 9 9 6