Very Sensitive Optical System with the Concentration and Decomposition Unit for Explosive Trace Detection

Open access


The vapour pressure of most explosives is very low. Therefore, the explosive trace detection is very difficult. To overcome the problem, concentration units can be applied. At the Institute of Optoelectronics MUT, an explosive vapour concentration and decomposition unit to operate with an optoelectronic sensor of nitrogen dioxide has been developed. This unit provides an adsorption of explosive vapours from the analysed air and then their thermal decomposition. The thermal decomposition is mainly a chemical reaction, which consists in breaking up compounds into two or more simple compounds or elements. During the heating process most explosive particles, based on nitro aromatics and alkyl nitrate, release NO2 molecules and other products of pyrolysis. In this paper, the most common methods for the NO2 detection were presented. Also, an application of the concentration and decomposition unit in the NO2 optoelectronic sensor has been discussed.

[1] Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Palka, N., Pasternak, M., Pustelny, T., Stacewicz, T., Wojtas, J. (2012). Sensors and systems for the detection of explosive devices. Metrol. Meas. Syst., 19(1), 3-28.

[2] Oxley, J. (1995). Explosives detection: potential problems. Proc. SPIE 2511, 217-225.

[3] Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H. (2012). A survey on gas sensing technology. Sensors 12(7), 9635-9665.

[4] Fine, G., Cavanagh, L., Afonja, A., Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 10(6), 5469-5502.

[5] Williams, D. E. (1999). Semiconducting oxides as gas-sensitive resistors. Sens. Actuat. B-Chem. 57(1-3), 1-19.

[6] Cantalini, C., Pelino, M., Sun, H.T., Faccio, M., Santucci, S., Lozzi, L., Passacantando, M. (1996). Cross sensitivity and stability of NO2 sensors from WO3 thin film. Sens. Actuat. B-Chem. 35(1-3), 112-118.

[7] Shieh, J., Feng, H. M., Hon, M. H., Juang, H. Y. (2002). WO3 and W-Ti-O thin-film gas sensors prepared by sol-gel dip-coating. Sens. Actuat. B-Chem. 86(1), 75-80.

[8] Williams, D. E., Salmond, J., Yung. Y. F., Akali, J., Wright, B., Wilson, J., Henshaw, G. S., Wells, D. B., Ding, G., Wagner, J., Laing, G. (2009). Development of low-cost ozone and nitrogen dioxide measurement instruments suitable for use in an air quality monitoring network. In Proceedings of of IEEE Sensors, 1099-1104.

[9] Zeng, J., Hu, M., Wang, W., Chen, H., Qin, Y. (2012). NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuat. B-Chem. 161(1), 447-452.

[10] Akamatsu, T., Itoh, T., Izu, N., Shin, W. (2013). NO and NO2 sensing properties of WO3 and Co3O4 based gas sensor. Sensors 13(9), 12467-12481.

[11] Jasinski, P., Suzuki, T., Anderson, H.U. (2003). Nanocrystalline undoped ceria oxygen sensor. Sens. Actuat. B-Chem. 95(1), 73-77.

[12] Karaduman, I., Yıldız, D.E., Sincar, M.M., Acar, S. (2014). UV light activated gas sensor for NO2 detection. Mat. Sci. Semicon. Proc. 28, 43-47.

[13] Pan, X., Zhao, X., Chen, J., Bermak, A., Fan, Z. (2015). A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response. Sens. Actuat. B-Chem. 206, 764-771. Available online 8th September 2014.

[14] Sharma, A., Tomar, M., Gupta, V. (2013). Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters. Sens. Actuat. B-Chem. 181, 735-742.

[15] Ederth, J., Smulko, J.M., Kish, L.B., Heszler, P., Granqvish, C.G. (2006). Comparison of classical and fluctuation-enhanced gas sensing with PdxWO3 nanoparticle films. Sens. Actuat. B-Chem. 113, 310-315.

[16] Hagleitner, C., Lange, D., Hierlemann, A., Brand, O., Baltes, H. (2002). CMOS single-chip gas detection system comprising capacitive, calorimetric and mass-sensitive microsensors. IEEE J. Solid-St. Circ. 37(12), 1867-1878.

[17] Navale, S.T., Mane, A.T., Chougule, M.A., Sakhare R.D., Nalage S.R., Patil V.B. (2014). Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films. Synthetic Met. 189, 94-99.

[18] Navale S.T., Mane A.T., Khuspe G.D., Chougule M.A., Patil V.B. (2014). Room temperature NO2 sensing properties of polythiophene films. Synthetic Met. 195, 228-233.

[19] Thai, T.T., Yang, L., DeJean, G.R., Tentzeris, M.M. (2011). Nanotechnology enables wireless gas sensing. IEEE Microw. Mag. 12(4), 84-95.

[20] Sayago, I., Santos, H., Horrill, M.C., Aleixandre, M., Fernández, M.J., Terrado, E., Tacchini, I., Aroz, R., Maser, W.K., Benito, A.M., Martínez, M.T., Gutiérrez, J., Muno, E. (2008). Carbon nanotube networks as gas sensors for NO2 detection. Talanta 77(2), 758-764.

[21] Lee, J-H., Kim, J., Seo, H., Song, J-W., Lee, E-S., Won, M., Han, C-S. (2008). Bias modulated highly sensitive NO2 gas detection using carbon nanotubes. Sens. Actuat. B-Chem. 129(2), 628-631.

[22] Jasinski, P. (2006). Solid-state electrochemical gas sensors. Materials Science-Poland 24(1), 269-278.

[23] Mizutani, Y., Matsuda, H., Ishiji, T., Furuya, N., Takahashi, K. (2005). Improvement of electrochemical NO2 sensor by use of carbon-fluorocarbon gas permeable electrode. Sens. Actuat. B-Chem. 108, 815-819.

[24] Wang, L., Han, B., Dai, L., Zhou, H., Li, Y., Wu, Y., Zhu, J. (2013). An amperometric NO2 sensor based on La10Si5NbO27.5 electrolyte and nano-structured CuO sensing electrode. J Hazard Mater. 262, 545-553.

[25] Wang, L., Han, B., Dai, L., Li, Y., Zhou, H., Wang H. (2013). A La10Si5NbO27.5 based electrochemical sensor using nano-structured NiO sensing electrode for detection of NO2. Mater Lett 109, 16-19.

[26] Zhou, L., Yuan, Q., Li, X., Xu, J., Xia, F., Xiao, J. (2015). The effects of sintering temperature of (La0.8Sr0.2)2FeMn6-8 on the NO2 sensing property for YSZ-based potentiometric sensor. Sens. Actuat. BChem. 206, 311-318.

[27] Oprea, A., Weimar, U., Simon, E., Fleischer, M., Frerichs, H.-P., Wilbertz, Ch., Lehmann, M. (2006). Copper phthalocyanine suspended gate field effect transistors for NO2 detection. Sens. Actuat. B-Chem. 118(1-2), 249-254.

[28] Andringa A-M., Smits E., Klootwijk J. H., de Leeuw D. M. (2013). Real-time NO2 detection at ppb level with ZnO field-effect transistors. Sens. Actuat. B-Chem.181, 668-673.

[29] Rosencwaig, A., Photoacoustics and Photoacoustic Spectroscopy. Willey, 1980.

[30] Saarela, J., Sorvajarvi, T., Laurila, T., Toivonen, J. (2011). Phase-sensitive method for backgroundcompensated photoacoustic detection of NO2 using high-power LEDs. Opt. Express 19(S4), A726-A732.

[31] Kosterev, A.A., Bakhirkin, Y.A., Curl, R.F., Tittel, F.K. (2002). Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 27(21), 1902-1904.

[32] Kosterev, A.A., Tittel, F.K., Serebryakov, D., Malinovsky, A., Morozov, A. (2005). Applications of quartz tuning fork in spectroscopic gas sensing. Rev. Sci. Instrum. 76(4), 043105:1-043105:9.

[33] Patimisco, P., Scamarcio, G., Tittel, F.K., Spagnolo, V. (2014). Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 14(4), 6165-6205.

[34] Yi, H., Liu, K., Chen, W., Tan, T., Wang, L., Gao, X. (2011). Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 36(4), 481-483.

[35] Zheng, H., Dong, L., Yin, X., Liu, X., Wu, H., Zhang, L., Ma, W., Yin, W., Jia, S. (2015). Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED. Sens. Actuat. B-Chem. 208, 173-179.

[36] O’Keefe, A., Deacon, D.A. (1988). Cavity ring-down optical spectrometer for absorption measurements using pulsed laser source. Rev. Sci. Instrum. 59, 2544-2551.

[37] Romanini, D., Kachanov, A.A., Stoeckel F. (1997). Cavity ringdown spectroscopy: broad band absolute absorption measurements. Chem. Phys. Lett. 270(5-6), 546-550.

[38] Hargrove, J., Wang, L., Muyskens, K., Muyskens, M., Medina, D., Zaide, S., Zhang, J. (2006). Cavity ringdown spectroscopy of ambient NO2 with quantification and elimination of interferences, Environ. Sci. Technol. 40(24), 7868-7873.

[39] Patricia Castellanos, Winston T. Luke, Paul Kelley, Jeffrey W. Stehr, Sheryl H. Ehrman, Russell R. Dickerson. (2009). Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity. Rev. Sci. Instrum. 80(11), 113107:1 113107:6.

[40] Sigrist, M. (1994). Air monitoring by spectroscopic techniques. New York: John Wiley & Sons.

[41] Triki, M., Cermak, P., M´Ejean, G., Romanini, D., (2008). Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis. Appl. Phys. B 91(1), 195-201.

[42] Hamilton, D. J., Orr-Ewing, A. J. (2011). A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Appl Phys B 102(4), 879-890.

[43] Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., Chen, W. (2014). Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications. J Quant Spectrosc Ra 133, 199-205.

[44] Stacewicz, T., Wojtas, J., Bielecki, Z., Nowakowski, M., Mikolajczyk, J., Medrzycki, R., Rutecka, B. (2012). Cavity Ring Down Spectroscopy: detection of trace amounts of substance. Opto-Electron. Rev. 20(1), 53-60.

[45] Singh, S. (2007). Sensors -An effective approach for the detection of explosives. J. Hazard. Mater., 144, (1-2), 15-28.

[46] CIA Explosives for Sabotage Manual. (1987). USA, Colorado: Paladin Press.

[47] Senesac, L., Thundat, T. G. (2008). Nanosensors for trace explosive detection. Materials Today 11(3), 28-36.

[48] Klapotke, T. M. (2011). Chemistry of high-energy materials. Berlin: Walter de Gruyter.

[49] Munson, C. A., Gottfried, J. L., De Lucia, F. C., McNesby, Jr., K. L., Miziolek A. W. (2007). Laser-Based Detection Methods for Explosives. Aberdeen Proving Ground : Army Research Laboratory.

[50] Politzr, P., Murray, J. S. (Eds.). (2003). Energetic Materials, Part 1. Decomposition crystal and molecular properties. Amsterdam: Elsevier.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 176 127 14
PDF Downloads 67 58 5