Infrared Devices And Techniques (Revision)

Open access

Abstract

The main objective of this paper is to produce an applications-oriented review covering infrared techniques and devices. At the beginning infrared systems fundamentals are presented with emphasis on thermal emission, scene radiation and contrast, cooling techniques, and optics. Special attention is focused on night vision and thermal imaging concepts. Next section concentrates shortly on selected infrared systems and is arranged in order to increase complexity; from image intensifier systems, thermal imaging systems, to space-based systems. In this section are also described active and passive smart weapon seekers. Finally, other important infrared techniques and devices are shortly described, among them being: non-contact thermometers, radiometers, LIDAR, and infrared gas sensors.

References

  • [1] Herschel, W. (1800). Experiments on the refrangibility of the invisible rays of the Sun, Phil. Trans. Roy. Soc. London 90, 284.

  • [2] Ross, W. (1994). Introduction to Radiometry and Photometry. Boston: Artech.

  • [3] Hudson, R. D. (1969). Infrared System Engineering. New York: Wiley.

  • [4] Rogalski, A. (2010). Infrared Detectors. Boca Raton: CRC Press.

  • [5] http://www.electronics-ca.com/infrared-detectors-market-report.html

  • [6] Couture, M. E. (2001). Challenges in IR optics, Proc. SPIE 4369, 649-661.

  • [7] Harris, D. C. (1999). Materials for Infrared Windows and Domes. Bellingham: SPIE Optical Engineering Press.

  • [8] Smith, W. J. (2000). Modern Optical Engineering. New York: McGraw-Hill.

  • [9] Lloyd, J. M. (1975). Thermal Imaging Systems. New York: Plenum.

  • [10] Kozlowski, L. J., Kosonocky, W. F. (1995). Infrared detector arrays Handbook of Optics, Chapter 23, ed M. Bass, E. W., Van Stryland, D. R., Williams, W. L., Wolfe. New York: McGraw-Hill.

  • [11] Mooney, J. M., Shepherd, F. D., Ewing, W. S., Silverman, J. (1989). Responsivity nonuniformity limited performance of infrared staring cameras, Opt. Eng. 28, 1151-1161.

  • [12] Chrzanowski, K. (2013). Review of night vision technology, Opto-Electron. Rev. 21, 153-182.

  • [13] http://www.hamamatsu.com/resources/pdf/etd/II_TII0004E02.pdf

  • [14] Cameron, A. S. (1990). The development of the combiner eyepiece night vision goggle, Proc. SPIE 1290, 16-19.

  • [15] Csorba, I. P. (1985). Image Tubes, Indianapolis: Sams.

  • [16] https://customeronline.thalesgroup.com/sites/default/files/asset/document/hel_topowl_en.pdf

  • [17] Miller, J. L. (1994). Principles of Infrared Technology. New York: Van Nostrand Reinhold.

  • [18] STANAG No. 4349 Measurement of the Minimum Resolvable Temperature Difference (MRTD) of Thermal Cameras.

  • [19] Campana, S. B. (1993). The Infrared and Electro-Optical Systems Handbook, vol 5, Passive Electro- Optical Systems, SPIE Optical Engineering Press Bellingham.

  • [20] http://www.ipac.caltech.edu/pdf/FIR-SMM_Crosscutting_Whitepaper.pdf

  • [21] Chrzanowski, K. (2001). Non-Contact Thermometry-Measurement Errors, Research and Development Treaties, 7, Warsaw: SPIE Polish Chapter.

  • [22] http://www.landinst.com

  • [23] http://www.fluke.com

  • [24] http://www.vigo.com.pl

  • [25] http://www.lumasense.com

  • [26] http://www.abb.com

  • [27] http://landsat.usgs.gov/band_designations_landsat_satellites.php

  • [28] http://www.dlr.de/eoc/en/Portaldata/60/Resources/images/2_dfd_la/DFD-LA-AbbSpek_en_2048.jpg

  • [29] http://bioengineering/antiparticle?articled=1307622#r20

  • [30] Argall, P. S., Sica, R. J. (2003). Lidar (Laser Radar), in The Optics Encyclopedia, ed Th.G. Brown, K., Creath, H., Kogelnik, M. A., Kriss, J., Schmit, M. J., Weber. Berlin: Wiley-VCH.

  • [31] http://www.csc.noaa.gov/digitalcoast/_/pdf/lidar101.pdf

  • [32] http://oceanservice.noaa.gov/facts/lidar.html

  • [33] Svanberg, S. (1990). Environmental monitoring using optical techniques, in Applied Laser Spectroscopy, 417-434, Demtröder, W., Inguscio, M. New York: Plenum.

  • [34] Wolf, J. P., Kölsch, H. J., Rairoux, P., Wöste, L. (1990). Remote detection of atmospheric pollutants using differential absorption lidar techniques, in Applied Laser Spectroscopy, 435-467. Demtröder, W., Inguscio, M. New York: Plenum.

  • [35] Luft, K. V. (1943). Über eine neue Methode der Registrierenden Gasanalyse mit Hilfe der Absorption Ultraroter Strahlen ohne Spektrale Zerlegu, Z. Tech. Phys. 24, 97-104.

  • [36] Hodgkinson, J., Tatam, R. P. (2013). Optical gas sensing: a review, Meas. Sci. Technol. 24, 012004, 59.

  • [37] Chou, J. (2000). Hazardous Gas Monitors, New York: McGraw-Hill.

  • [38] Capasso, F., Gmachl, C., Paiella, R., Tredicucci, A., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., Cho, A.Y. (2000). New frontiers in quantum cascade lasers and applications, IEEE Selected Topics in Quantum Electronics 6, 931-947.

  • [39] Yang, R. Q., Bradshaw, J. L., Bruno, J. D., Pham, J. T., Wortman, D. E. (2002). Mid-infrared type II interband cascade lasers, IEEE J. of Quant. Elect. 38, 547-558.

  • [40] Yoshimura, R., Kohtoku, M., Fujii, K., Sakamoto, T., Sakai, Y. (2014). Highly sensitive laser based tracegas sensor technology and its application to stable isotope ratio analysis, NTT Technical Review 12(4), 1-6.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 40
PDF Downloads 8 8 7