Prony’s Method with Reduced Sampling - Numerical Aspects

Open access

Abstract

This paper presents a new modification of the least-squares Prony’s method with reduced sampling, which allows for a significant reduction in the number of the analysed signal samples collected per unit time. The specific combination of non-uniform sampling with Prony’s method enables sampling of the analysed signals at virtually any average frequency, regardless of the Nyquist frequency, maintaining high accuracy in parameter estimation of sinusoidal signal components. This property allows using the method in measuring devices, such as for electric power quality testing equipped with low power signal processors, which in turn contributes to reducing complexity of these devices. This paper presents research on a method for selecting a sampling frequency and an analysis window length for the presented method, which provide maximum estimation accuracy for Prony’s model component parameters. This paper presents simulation tests performed in terms of the proposed method application for analysis of harmonics and interharmonics in electric power signals. Furthermore, the paper provides sensitivity analysis of the method, in terms of common interferences occurring in the actual measurement systems.

References

  • [1] Zygarlicki, J., Zygarlicka, M., Mroczka, J., Latawiec, K. (Apríl 2010). A reduced Prony’s method in power quality analysis - parameters selection. IEEE Transactions on Power Delivery, 25(2), 979–986.

  • [2] Zygarlicki, J., Mroczka, J. (2012). Variable-frequency Prony method in the analysis of electrical power quality. Metrology and Measurement Systems (M&MS), 19(1), 39—48.

  • [3] Zygarlicki, J., Mroczka, J. (2012). Prony method used for testing harmonics and interharmonics of electric power signals. Metrology and Measurement Systems (M&MS), 19(4), 659–672.

  • [4] Zygarlicki, J., Mroczka, J. (2012). Method of testing and correcting signal amplifiers’ transfer function using Prony analysis. Metrology and Measurement Systems (M&MS), 19(3), 489—498.

  • [5] Zygarlicki, J. (2012). Reduced Prony method - advanced properties, Electrical Review, 10a, 49–54.

  • [6] Zygarlicki, J., Mroczka, J. (2011). Short time algorithm of power waveforms fundamental harmonic estimations with Prony’s methods use. Metrology and Measurement Systems, 18(3), 33–38.

  • [7] Zahlay, F.D., Rama Rao, K.S. (April 2012). Neuro-Prony and Taguchi’s methodology based adaptive autoreclosure scheme for electric transmission systems. IEEE Trans. Power Del., 27(2), 575–582.

  • [8] Faiz, J., Lotfi-fard, S., Shahri, S.H. (2007). Prony-Based Optimal Bayes Fault Classification of Overcurrent Protection. IEEE Trans. Power Del., 22(3), 1326–1334.

  • [9] Feilat, E. A. (October 2006). Detection of voltage envelope using Prony analysis-Hilbert transform method. IEEE Trans. Power Del., 21(4), 2091–2093.

  • [10] Feilat, E. A. (October 2006). Prony analysis technique for estimation of the mean curve of lightning impulses. IEEE Trans. Power Del., 21(4), 2088–2090.

  • [11] Peng, J. C. -H., Nair, N. K. C. (2009). Adaptive sampling scheme for monitoring oscillations using Prony analysis. Generation, Transmission & Distribution, IET, 3(12), 1052–1060.

  • [12] Tawfik, M. M., Morcos, M. M. (April 2001). ANN-based techniques for estimating fault location on transmission lines using Prony method. IEEE Trans. Power Del., 16(2), 219–224.

  • [13] Tawfik, M. M., Morcos, M. M. (January 2005). On the use of Prony method to locate faults in loop systems by utilizing modal parameters of fault current. IEEE Trans. Power Del., 20(1), 532–534.

  • [14] Tawfik, M. M., Morcos, M. M. (2006). Fault Location on Loop Systems Using the Prony Algorithm. Electric Power Components and Systems, 34(4), 433—144.

  • [15] Chaari, O., Bastard, P., Meunier, M. (1995). Prony’s method: An efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks. IEEE Trans. Power Del., 10(3), 1234–1241.

  • [16] Kumaresan, R., Feng, Y. (1991). FIR prefiltering improves Prony’s method. IEEE Trans. Signal Processing, 39(3), 736–741.

  • [17] Trudnowski, D. J., Johnson, J. M., Hauer, J. F. (1999). Making Prony analysis more accurate using multiple signals. IEEE Trans. Power Systems, 14(1), 226–231.

  • [18] Chaari, O., Bastard, P., Meunier, M. (1995). Prony’s method: an efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks. IEEE Trans. Power Del., 10(3), 1234–1241.

  • [19] Li, H., Li, Z., Halang, W., Zhang, B., Chen, G. (2007). Analyzing Chaotic Spectra of DC-DC Converters Using the Prony Method. IEEE Trans. Circuits and Systems II, 54(1), 61 -65.

  • [20] Delfino, F., Procopio, R., Rossi, M., Rachidi, F. (April 2012). Prony Series Representation for the Lightning Channel Base Current. IEEE Trans. Electromagnetic Compatibility, 54(2), 308–315.

  • [21] Marple, S., Lawrence, J. (1987). Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall.

  • [22] Szmajda, M., Gorecki, K. (October 2007). DFT algorithm analysis in low-cost power quality measurement systems based on a DSP processor. in Proc. 9th International Conference Electrical Power Quality and Utilisation, Barcelona (Spain), 1–6.

  • [23] Wen, H., Teng, Z., Wang, Y., Zeng, B., Hu, X. (September 2011). Simple Interpolated FFT Algorithm Based on Minimize Sidelobe Windows for Power-Harmonic Analysis. IEEE Trans. Power Electronics, 26(9), 2570–2579.

  • [24] Borkowski, J., Mroczka, J. (2010). LIDFT method with classic data windows and zero padding in multifrequency signal analysis, Measurement (London), 43(10), 1595–1602.

  • [25] Standard IEC 61000-4-30 (2008) - Testing and measurement techniques - Power quality measurement methods.

  • [26] Standard EN 50160 (2010) - Voltage characteristics of electricity supplied by public distribution networks.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 12
PDF Downloads 2 2 1