The Impedance Measurements Problem in Antennas for RFID Technique

Open access


The authors paid particular attention to the problem of antenna impedance measurements in the RFID technique. These measurements have to be realized by using two ports of a vector network analyzer and dedicated passive differential probes. Since the measurement process and estimated parameters depend on the frequency band, operating conditions, type of the system component and antenna designs used, appropriate verification of the impedance parameters on the basis of properly conducted experiments is a crucial stage in the antenna synthesis of transponders and read/write devices. Accordingly, a systematized procedure of impedance measurements is proposed. It can be easily implemented by designers preparing antennas for different kinds of RFID applications. The essence of indirect measurements of the differential impedance parameters is discussed in details. The experimental verification has been made on the basis of a few representative examples.

[1] Finkenzeller, K. (2010). RFID Handbook. 3-rd ed., Wiley.

[2] Yao, W., Chu, C.H., Li, Z. (2012). The Adoption and Implementation of RFID Technologies in Healthcare: A Literature Review. J. Med. Syst., 36, 3507–3525.

[3] Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarrià, D., Menesatti, P. (2013). A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. FoodBioprocess Technol., 6, 353–366.

[4] Ha, O., Park, M., Lee, K., Park, D. (2013). RFID Application in the Food-Beverage Industry: Identifying Decision Making Factors and Evaluating SCM Efficiency. KSCE Journal of Civil Engineering, 7, 1773–1781.

[5] Ustundag, A. (2013). The Value of RFID, Benefits vs. Costs. Springer-Verlag.

[6] Jankowski-Mihułowicz, P., Węglarski, M. (2012). Determination of 3-Dimentional Interrogation Zone in Anticollision RFID Systems with Inductive Coupling by Using Monte Carlo Method. Acta Phys. Pol. A, 121(4), 936–940.

[7] Sharma, A., Zuazola, I.J.G., Gupta, A., Perallos, A., Batchelor, J.C. (2013). Non-Uniformly Distributed-Turns Coil Antenna for Enhanced H-Field in HF-RFID. IEEE Trans. Antennas Propag., 61(10), 4900–4907.

[8] Petrariu, A.-I., Popa, V., Gaitan, V.-G., Finis, I. (2012). Test results for HF RFID antenna system tuning in metal environment. In Proc. of 13th ICCC 2012. High Tatras, Slovakia, 543–546.

[9] Jankowski-Mihułowicz, P., Węglarski, M. (2012). Synthesis of Read/Write Device Antenna for HF Proximity Range RFID Systems with Inductive Coupling. PE, 88(3a), 70–73.

[10] Ahmad, M.Y., Mohan, A.S. (2011). Multi-loop bridge HF RFID reader antenna for improved positioning. In Proc. of APMC 2011. Melbourne, Australia, 1426–1429.

[11] Qing, X., Chen, Z.N. (2009). Characteristics of a metal-backed loop antenna and its application to a high-frequency RFID smart shelf. IEEE Antennas Propag. Mag., 51(2), 26–38.

[12] Wobak, M., Gebhart, M., Muehlmann, U. (2012). Physical Limits of Batteryless HF RFID Transponders defined by System Properties. In Proc. IEEE RFID-TA 2012. Grenoble, France, 142–147.

[13] Ohnimus, F., Ndip, I., Guttowski, S., Reichi, H. (2008). Design and analysis of a bent antenna-coil for a HF-RFID transponder. In Proc. 38th Eur. Microw. Conf. 2008. Amsterdam, Netherlands, 75–78.

[14] Hennig, A. (2008). Feasibility of Deeply Implanted Passive Sensor Transponders in Human Bodies. In Proc. of 4th European Workshop on RFID SysTech 2008. Freiburg, Germany, 1–7.

[15] De Vita, G., Iannaccone, G. (2005). Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Trans. Microw. Theory Tech., 53(9), 2978–2990.

[16] Wei, P., Che, W., Bi, Z., Wei, C., Na, Y., Qiang, L., Hao, M. (2011). High-Efficiency Differential RF Front-End for a Gen2 RFID Tag. IEEE Trans. Circuits Syst., 58(4), 189–194.

[17] Dobkin, D. (2012). The RF in RFID, UHF RFID in Practice, SE. Newnes, 2012.

[18] Meyers, R., Janssens, F. (1998). Measuring the impedance of balanced antennas by an S-Parameter method. IEEE Antennas and Propag. Mag., 40(6), 62–65.

[19] Bockelman, E., Eisenstadt, W.R. (1995). Combined Differential and Common-Mode Scattering Parameters: Theory and Simulation. IEEE Trans. Microw. Theory Techn., 43(7), 1530–1539.

[20] Janeczek, K., Jankowski-Mihułowicz, P., Jakubowska, M., Kozioł, G., Młożniak, A., Futera, K., Stęplewski, W. (2012). Performance Characterization of UHF RFID Antennas Manufactured with Screen Printing Technique on Flexible Substrates. Microelectronic Materials and Technologies, 232(2), 61–74.

[21] Koskinen, T., Rajagopalan, H., Rahmat-Samii, Y. (2009). Impedance measurements of various types of balanced antennas with the differential probe method. In Proc. of IEEE iWAT 2009. Santa Monica, CA, USA, 1–4.

[22] Pantoja, A.J.J, Pena, N.M., Roman, F., Vega, F., Rachidi, F. (2012). Wideband experimental characterization of differential antenna. In Proc. of 6th EUCAP 2012. Prague, Czech Republic, 2135–2139.

[23] N1021B 18 GHz Differential TDR Probe Kit. Agilent, 5990-4013EN. (5 Nov. 2013).

[24] Differential Impedance TDR Probes for the DSA8300, P80318. Tektronix, 85W-18863-2. (28 Apr. 2011).

[25] TDR BladeProbe, Innovative TDR Handheld Probe Solutions. PacketMicro, Datasheet. (2013).

[26] Rumiantsev, A., Ridler, N. (2008). VNA calibration, IEEE Microw. Mag., 9(3), 86–99.

[27] Qing, X., Chean, K.G., Chen, Z.N. (2009). Impedance characterization of RFID tag antennas and application in tag co-design. IEEE Trans. Microw. Theory Techn., 57(5), 1268–1274.

[28] Zhu, H.L., Ko, Y.C.A., Ye, T.T. (2010). Impedance measurement for balanced UHF RFID tag antennas. In Proc. of IEEERWS2010. New Orleans, LA, USA, 128–131.

[29] da Costa, F.C., de Lima, E.R., Yoshioka, R.T., Bertuzzo, J.E., Koeppe, J. (2013). Impedance measurement of dipole antenna for EPC Global compliant RFID tag. In Proc. of SBMO/IEEE MTT-S IMOC2013. Rio de Janeiro, RJ, Brazil, 1–5.

[30] SL900A Single-Chip EPC Data Logger with Sensor. IDS Microchip AG, Product Flyer. (March 2010).

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 125 13
PDF Downloads 44 44 8