Fast High-Impedance Spectroscopy Method Using Sinc Signal Excitation

Open access


In this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| ≥1 GΩ) is evaluated by means of simulation and a practical experiment. The method is based on excitation of an object with a sinc signal and sampling the response signals proportional to current flowing through and voltage across the measured impedance. The object’s impedance spectrum is obtained with the use of continuous Fourier transform on the basis of linear approximations between samples in two acquisition sections, connected with the duration of the sinc signal. The method is first evaluated in MATLAB by means of simulation. An influence of the sinc signal duration and the number of samples on impedance modulus and argument measurement errors is explored. The method is then practically verified in a constructed laboratory impedance spectroscopy measurement system. The obtained acceleration of impedance spectroscopy in the low frequency range (below 1 Hz) and the decrease of the number of acquired samples enable to recommend the worked out method for implementation in portable impedance analyzers destined for operation in the field.

[1] Barsoukov, E., Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment and Applications, John Wiley & Sons.

[2] Skale, S., Doleżek, V., Slemnik, M. (2008). Electrochemical impedance studies of corrosion protected surfaces covered by epoxy polyamide coating systems, Prog. Organic Coat., (62), no. 12, 2456−2460.

[3] Zhang, Xu, Koon Gee, Neoh, Anil, Kishen (2008). Monitoring acid-demineralization of human dentine by electrochemical impedance spectroscopy, Journal of Dentistry, 36(12), 1005−1012. (December 2008).

[4] Srinivas, K., Sarah, P., Suryanarayana, S. V. (2003). Impedance spectroscopy study of polycrystalline BI6FE2TI3O18, Bulletin of Material Science, (26), 247−253.

[5] Macdonald, J. R. (1999). LEVM Manual v.7.11. C,LS Immittance Fitting Program. Solartron Group Ltd.

[6] Angelini, E., Carullo, A., Corbellini, S., Ferraris, F., Gallone, V., Grassini, S., Parvis, M., Vallan, A. (2006). Handheld-impedance-measurement system with seven-decade capability and potentiostatic function. IEEE Trans. Instrum. Meas., vol. 55, no. 2, Apr. 2006, pp. 436−441.

[7] Santos, J., Ramos, P. (2011) DSPIC-Based Impedance Measuring Instrument. Metrology and Measurement Systems. Vol. XVIII, Issue 2, pp. 185-198.

[8] Ramos, P., Janeiro, F., Radil, T. (2010) Comparative Analysis of Three Algorithms for Two-Channel Common Frequency Sinewave Parameter Estimation: Ellipse Fit, Seven Parameter Sine Fit and Spectral Sinc Fit. Metrology and Measurement Systems. Vol. XVII, Issue 2, pp. 255-270

[9] Hoja, J., Lentka, G. (2006). Interface circuit for impedance sensors using two specialized single-chip microsystems. Sensors and Actuators A-physical, Vol. 163, No. 1, 2010, pp. 191−197.

[10] Uchiyama, T., Ishigame, S., Niitsuma, J., Aikawa, Y., Ohta, Y. (2008). Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique, J. of Tissue Viability, 17(4), 110−114.

[11] Sanchez, B., Bragos, R., Vandersteen, G. (2011). Influence of the multisine excitation amplitude design for biomedical applications using impedance spectroscopy, 33rd Annual International Conference of the IEEE EMBS (Boston, USA, 30 August - 3 September 2011), pp 3975-78.

[12] Min, M., Ojarand, J., Märtens, O., Paavle, T., Land, R., Annus, P., Rist, M., Reidla, M., Parve, T., (2012). Binary signals in impedance spectroscopy, 34th Annual International Conference of the IEEE EMBS, (San Diego, USA, 28 August - 1 September 2012), pp 134-37.

[13] Mejia-Aguilar, A., Pallas-Areny, R. (2008). Electrical impedance measurement using pulse excitation, Proc. of 16th IMEKO TC4 Symp. (Florence, Italy, 22-24 September 2008,), pp 567-72.

[14] Smulko, J., Darowicki, K., Wysocki P. (1998). Digital measurement system for electrochemical noise. Polish Journal of Chemistry, 72(7), 1237−1241.

[15] Smulko, J., Darowicki, K., Zieliński, A. (2002). Detection of random transients caused by pitting corrosion. Electrochimica acta, 47(8), 1297−1303.

[16] Hoja, J., Lentka, G. (2011). Method using square-pulse excitation for high-impedance spectroscopy of anticorrosion coatings, IEEE Transactions on Instrumentation and Measurement, 60 957-64.

[17] U2541-90014, Agilent U2500A Series USB Simultaneous Sampling Multifunction Data Acquisition, Programmer’s Reference, Agilent Technologies, Inc., 2009.

[18] Bordzilowski, J., Darowicki, K., Krakowiak, S., Krolikowska, A., (2003). Impedance measurements of coating properties on bridge structures, Progress in Organic Coatings, Vol. 46, 216−219.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 11
PDF Downloads 55 55 6