Modeling of HgCdTe LWIR detector for high operation temperature conditions

Open access


The paper reports on the photoelectrical performance of the long wavelength infrared (LWIR) HgCdTe high operating temperature (HOT) detector. The detector structure was simulated with commercially available software APSYS by Crosslight Inc. taking into account SRH, Auger and tunnelling currents. A detailed analysis of the detector performance such as dark current, detectivity, time response as a function of device architecture and applied bias is performed, pointing out optimal working conditions.

[1] Rogalski A. (2011). Infrared Detectors, second edition. CRC Press, Boca Raton.

[2] Martyniuk P., Rogalski A. (2013). HOT infrared detectors. Opto-Electron. Rev., 21(2), 239.257.

[3] Rogalski A. (2005). HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys., 68, 2267. 2336.

[4] Norton P. (2002). HgCdTe infrared detectors. Opto-Electron. Rev., 10, 159.174.

[5] Piotrowski J., Rogalski A. (2007). High-Operating-Temperature Infrared Photodetectors. Ed. SPIE, Bellingham, ISBN: 9780819465351.

[6] Piotrowski J. and Piotrowski A. (2011). Room temperature photodetectors. Mercury Cadmium Telluride: Growth, Properties and Applications edited by Peter Capper and James Garland, Willey, 513.537.

[7] Piotrowski J. (1972). A new method of obtaining CdHgTe thin films. Electr. Technol., 5, 87.89.

[8] Jezykowski R., Persak T., Piotrowski J. (1972). Uncooled photodetectors based on 8-12 µm HgCdTe layers. (in Polish), Biul. WAT, 5, 105.109.

[9] Grudzien M. and Piotrowski J. (1989). Monolithic optically immersed HgCdTe IR detectors. Infrared Phys., 29, 251.253.

[10] Ashley T. and Elliott C. T. (1985). Non-equilibrium mode of operation for infrared detection. Electron. Lett., 21, 451.452.

[11] Ashley T. and Elliott C. T. (1991). Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques. Semicond. Sci. Technol., 6, C99.C105.

[12] Ashby M. K., Gordon N. T., Elliott C.T., Jones C.L., Maxey C. D., Hipwood L. and Catchpole R. (2003). Novel Hg1-xCdxTe device structure for higher operating temperature detectors. J. Electron. Mat. 32, 667.671.

[13] Maxey C.D., Jones C.L., Metcalfe N.E., Catchpole R.A., Gordon N.T., White A.M. and Elliot C.T. (2007). MOVPE growth of improved non-equlibrium MCT device structures for near ambient temperature heterodyne detectors. Proc. SPIE, 3122, 453.464.

[14] Adamiec K., Gawron W., Piotrowski J. (1997). Isothermal vapor phase epitaxy and RF sputtering for band gap engineered HgCdTe. Proc. SPIE, 3179, 251.255.

[15] Piotrowski J., Grudzie* M., Nowak Z., Orman Z., Pawluczyk J., Romanis M. and Gawron W. (2000). Uncooled photovoltaic Hg1-xCdxTe LWIR detectors. Proc. SPIE, 4130, 175.184.

[16] Wenus J., Rutkowski J., Rogalski A. (2001). Two-Dimensional Analysis of Double-Layer Heterojunction HgCdTe Photodiodes. IEEE Transactions on Electron Devices, 48, 1326.1332.

[17] Rutkowski J., Wenus J. (2001). Inherent and additional limitations of HgCdTe heterojunction photodiodes. Opto-Electron. Rev., 9, 331.335.

[18] Wenus J., Rutkowski J., (2002). Influence of valence-band barriers in VLWIR HgCdTe P-on-n heterojunctions on photodiode parameters. Phys. Stat. Sol. (b), 229, 1093.1096.

[19] Kubiak L., Madejczyk P., Wenus J., Gawron W., Jó+wikowski K., Rutkowski J., Rogalski A. (2003). Status of HgCdTe photodiodes at the Military University of Technology. Opto-Electron. Rev., 11, 211.226.

[20] Piotrowski J., Gawron W., Orman Z., Pawluczyk J., K-os K., StProc. SPIE, 7660, 766031-766031-8.

[21] Klipstein P. (2008). XBn. barrier photodetectors for high sensitivity and high operating temperature infrared sensors. Proc. SPIE, 6940, 69402U-1.11.

[22] Ting D. Z., Hill C. J., Soibel A., Nguyen J., Keo S., Lee M. C., Mumolo J. M., Liu J. K., and Gunapala S. D. (2010). Antimonide-based barrier infrared detectors. Proc. SPIE, 7660, 76601R.

[23] Ting D. Z., Soibel A., Höglund L., Nguyen J., Hill C.J., Khoshakhlagh A., and Gunapala S. D. (2011). Type-II superlattice infrared detectors. In Semiconductors and Semimetals, edited by S. D. Gunapala, D. R. Rhiger, and C. Jagadish, Elsevier, Amsterdam.

[24] Rogalski A., Martyniuk P. (2006). InAs/GaInSb superlattices as a promising material system for third generation infrared detectors. Infrared Physics & Technol., 48, 39.52.

[25] Martyniuk P., Rogalski A. (2008). Comparison of performance of quantum dot and other types infrared photodetectors. Proc. SPIE, 6940, 694004.

[26] Martyniuk P., Wrobel J., Plis E., Madejczyk P., Kowalewski A., Gawron W., Krishna S., Rogalski A. (2012). Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector. Semicond. Sci. Technol., 27, 055002.

[27] Wróbel J., Martyniuk P., Plis E., Madejczyk P., Gawron W., Krishna S., Rogalski A. (2012) Dark current modeling of MWIR type-II superlattice detectors. Proc. SPIE, 8353, 8353-16.

[28] Martyniuk P., Wróbel J., Plis E., Madejczyk P., Gawron W., Kowalewski A., Krishna S., Rogalski A. (2013). Modeling of mid wavelength infrared InAs/GaSb type II superlattice detectors. Optical Engineering52, 061307-1.12.

[29] Gawron W., Piotrowski J. (1994). Practical near room-temperature, long-wavelength IR photovoltaic detectors. Opto-Electron. Rev., 2, 91.94.

[30] Piotrowski J., Gawron W. (1995). Extension of longwavelength IR photovoltaic detector operation to near room- temperatures. Infrared Physics & Technol., 36, 1045-1051.

[31] Piotrowski J., Gawron W. (1997). Ultimate performance of infrared photodetectors and figure of merit of detector material. Infrared Physics & Technol., 38, 63-68.


[33] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of usable spectral range of Peltier cooled photodetectors. Acta Physica Polonica A, 116, 52.55.

[34] Piotrowski A., Piotrowski J., Gawron W., Pawluczyk J., Pedzinska M. (2009). Extension of spectral range of Peltier cooled photodetectors to 16 µm. Proc. SPIE, 7298, 729824.

[35] Stanaszek D., Piotrowski J., Piotrowski A., Gawron W., Orman Z., Paliwoda R., Brudnowski M., Pawluczyk J. , Pedzi*ska M. (2009). Mid and long infrared detection modules for picosecond range measurements. Proc. SPIE, 7482, 74820M-74820M-11.

[36] Piotrowski J., Pawluczyk J., Piotrowski A., Gawron W., Romanis M., K-os K. (2010). Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev., 18, 318.327.

[37] APSYS Macro/User.s Manual ver. 2011. (2011). Crosslight Software, Inc.

[38] Martyniuk P., Rogalski A. (2013). Modeling of MWIR HgCdTe complementary barrier HOT detector. Solid-State Electronics, 80, 96.104.

[39] Martyniuk P., Rogalski A. (2013). Theoretical modeling of MWIR thermoelectrically cooled nBn HgCdTe detector. Bull. Pol. Ac.: Tech., 61, 1.

[40] Capper P. P. (1994). Properties of Narrow Gap Cadmium-based Compounds, London, U.K.: Inst. Elect. Eng.

[41] Piotrowski A., Madejczyk P., Gawron W., K-os K. Pawluczyk J., Rutkowski J., Piotrowski J., Rogalski A. (2007). Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Physics & Technol. 49, 173.182.

[42] Madejczyk P., Piotrowski A, K-os A., Gawron W., Rutkowski J., Rogalski A. (2010). Control of acceptor doping in MOCVD HgCdTe epilayers. Opto-Electron. Rev., 18, 271.276.

[43] Tennant W. E., Lee D., Zandian M., PiQuette E., Carmody M. (2008). MBE HgCdTe Technology: A very general solution to IR detection, described by .Rule07., a very convenient heuristic. J. Electron. Mater., 37, 1406.1410.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 9
PDF Downloads 41 41 3