A Velocity Measurement Method Based on Scaling Parameter Estimation of a Chaotic System

Open access

A Velocity Measurement Method Based on Scaling Parameter Estimation of a Chaotic System

In this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the effectiveness of the proposed method in target velocity measurement.

Liu, Z., Zhu, X., Hu, W. (2007). Principles of chaotic signal radars. International Journal of Bifurcation and Chaos, 17 (5),1735-1739.

Leung, H., Shanmugam, S., Xie, N.(2006). An ergodic approach for chaotic signal estimation at low SNR with application to ultra-wide-band communication. IEEE Trans. Signal Process., 54 (5), 1091-1103.

Venkatasubramanian, V., Leung, H. (2005). A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging. IEEE Signal Processing Letters, 12 (6), 528-531.

Ghosh, D. (2008). Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. Phys. Rev. E, 78, 056211(1)-056211(5).

Wang, K. et al (2008). Symbolic Vector Dynamics Approach to Initial Condition and Control Parameters Estimation of Coupled Map Lattices. IEEE Trans. Circuits and Systems I: Regular Papers, 55 (4), 1116-1124.

Thayaparan, T. et al (2008). Editorial Signal Processing in Noise Radar Technology. IET Radar, Sonar and Navigation, 2 (4), 229-232.

Narayanan, R.M., Dawood, M. (2000). Doppler estimation using a coherent ultrawide-band random noise radar. IEEE Trans. Antennas and Propagation, 28 (6), 868-878.

Carroll, T. (2005). Chaotic system for self-synchronizing Doppler measurement. Chaos, 15, 013109.1-013109.5.

Shi, Z., Qiao, S., Chen, K.S. (2007). Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Progress In Electromagnetics Research, 77, 1-14.

Susek, W., Stec, B. (2010). Broadband microwave correlation of noise signals. Metrology and Measurement System, 17 (2), 289-299.

Pecora, L., Carroll, T. (1990). Synchronization in chaotic systems. Phys. Rev. Lett., 64 (6), 821-825.

Wang, K., Pei, W., He, Z. (2007). Estimating initial conditions in coupled map lattices from noisy time series using symbolic vector dynamics. Phys. Lett. A, 367 (6), 316-321.

He, Q., Wang, L., Liu, B. (2006). Parameter estimation for chaotic systems by particle swarm optimization. Chaos, Solitons & Fractals, 34 (2), 654-661.

Gao, F., Lee, J., Li, Z. (2009). Parameter estimation for chaotic system with initial random noises by particle swarm optimization. Chaos, Solitons and Fractals, 42, 1286-1291.

Fostin, H., Woafo, P. (2005). Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification. Chaos, Solitons & Fractals, 24 (12), 1363-1371.

Travassos X. L., Vieira D., Palade V. (2009). Noise Reduction in a Non-Homogenous Ground Penetrating Radar Problem by Multiobjective Neural Networks. IEEE Trans. Magnetics, 45 (3), 1454-1457.

Metrology and Measurement Systems

The Journal of Committee on Metrology and Scientific Instrumentation of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 1.598

CiteScore 2016: 1.58

SCImago Journal Rank (SJR) 2016: 0.460
Source Normalized Impact per Paper (SNIP) 2016: 1.228

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 29 29 11
PDF Downloads 5 5 2