Modelling the Unsteady Flow of Water into a Partly Saturated Soil

  • 1 Department of Civil Engineering, Faculty of Technology, University Aboubekr BELKAID, Tlemcen, Algeria
  • 2 Department of Civil Engineering, Faculty of Technology, University Aboubekr BELKAID, Tlemcen, Algeria
  • 3 Department of Civil Engineering, Faculty of Technology, University Aboubekr BELKAID, Tlemcen, Algeria

Abstract

Flows in unsaturated medium are frequent in the field of civil engineering and more particularly in geotechnics. The study undertaken here tries to solve the unsaturated transient flow equation in porous media using the finite element method. Numerical solution of a finite element discretization is used along with an implicit integration scheme of the time stepping. A functional one that makes it possible to find the distribution of the hydraulic load has been proposed and a calculation program has been developed. The results obtained by this program called TFAP (Transient Flow Analysis Program) are compared to other previous work in the subject. The authors show the importance of this study through two real examples. Liakopoulos conducted several experiments on the water drainage through a vertical column filled with Del Monte sand. One of these experiments was chosen to perform a simulation by the model. The results of the calculation are compared with the experimental data as well.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Vachaud G. (1968). Contribution à l’étude des problèmes d’écoulement en milieux poreux non saturés. PhD Thesis, Faculty of Sciences, University of Grenoble, 159 p.

  • [2] Ed Diny S. (1993). Etude expérimentale des transferts hydriques et du comportement mécanique d’un limon non saturé. Thesis of the INPL-National Polytechnic Institute of Lorraine. Nancy, 177p.

  • [3] Childs, E. C. (1969). An introduction to the physical basis of soil water phenomena. New York-London: J. Wiley and Sons. Inc. https://DOI.org/10.1180/claymin.1969.008.2.13

  • [4] Olsen Harold W. (1966) Darcy’s law in saturated kaolinite. Water Resources Research. 2 (2).p. 287–295. https://DOI.org/10.1029/WR002i002p00287

  • [5] Buckingham E. (1931). Studies on the movement of soil moisture. Bulletin 38. USDA Bureau of Soils. 30 Washington. DC. 1907.

  • [6] Richards L.A. Capillary conduction of s through porous medium. Physics 1, 318-333 https://DOI.org/10.1063/1.1745010

  • [7] Childs, E.C. and Collis-George G.N. (1950). The permeability of porous materials. Proceeding of the Royal Society of London Series A 201. 392-405. https://DOI.org/10.1098/rspa.1950.0068

  • [8] Philip J. R. (1955). The concept of diffusion applied to soil water. Proc. Nat. Acad. Sci. India 24A, pp.93-104. https://Doi.org/10.1016/0016-7061(74)90021-4

  • [9] Bruce R.R. and Klute A. (1956). The measurement of soil water diffusivity. Soil Science Society of American Proceeding. Vol. 20, p.458-462. Doi:10.2136/sssaj1956.03615995002000040004x

  • [10] Philip J. R. (1957). The theory of infiltration: 1. the infiltration equation and its solution. Soil Sci., Vol. 83, pp.345-357. DOI: 10.1097/00010694-200606001-00009

  • [11] Philip J. R. (1957). The theory of infiltration: 2. the profile infinity. Soil Sci., Vol. 83, pp.435-448. 1957b.

  • [12] Morel-Seytoux, H.J., Billica, J.A. (1985). A Two-Phase Numerical Model for Prediction of Infiltration: Applications to a Semi-Infinite Soil Column. Water Resources Research. 21(4), p. 607-615. 1985a https://DOI.org/10.1029/WR021i004p00607

  • [13] Morel-Seytoux, H.J., Billica, J.A. (1985). A Two-Phase Numerical model for prediction of infiltration: case of an impervious bottom. Water Resources Research, 21(9), p. 1389-1396. 1985b. https://DOI.org/10.1029/WR021i009p01389

  • [14] Hoffmann M. R. (2003). Macroscopic equations for flow in unsaturated porous media. Ph.D. dissertation, Washington University. 2003.

  • [15] Ju S. H. and Kung K. J. S. (1997). Mass types, element orders and solution schemes for Richards’equation. Computers and Geosciences, 23(2), 175–187.https://DOI.org/10.1016/S0098-3004(97)85440-4

  • [16] Arampatzis G., Tzimopoulos C., Sakellariou-Makrantonaki M. and Yannopoulos S. (2001). Estimation of unsaturated flow in layered soils with the finite control volume method. Irrig. Drain, 50, pp. 349–358, 2001. 10.1002/ird.31

  • [17] Nasseri M. Shaghaghian MR., Daneshbod Y. (2008). An analytic solution of water transport in unsaturated porous media. Journal of Porous Media. 11(6). DOI: 10.1615/JPorMedia.v11.i6.60

  • [18] Kavetski D., Binning P. and Sloan S. W. (2002). Non-iterative time stepping schemes with adaptive truncation error control for the solution of Richards’ equation. Adv. Wat. Res. 38(10), 1211–1220. https://DOI.org/10.1029/2001WR000720

  • [19] Haverkamp R. (1983). Solving the equation for the infiltration of water into the soil. Analytical and numerical approaches. PhD thesis ESE-Physical Sciences: Univ. Scientific and Medical and National Polytechnic Institute of Grenoble, 240 pages.

  • [20] Humbert P. (1984). Application of finite element method for flow in porous media. LPC newsletter, No. 132, p. 21-37. 1984.

  • [21] Baca R. G., Chung J. N. and Mulla D. J. (1997). Mixed transform finite element method for solving the nonlinear equation for flow in variably saturated porous media. Int. J. Numer. Method. Fluid. 24, 441–455.https://DOI.org/10.1002/(SICI)1097-0363(19970315)24:5<441::AID-FLD501>3.0.CO;2-9

  • [22] Bergamaschi L. and Putti, M. (1999). Mixed finite element and Newton-type linearizations for the solution of Richards’ equation. Int. J. Numer. Method. Eng., 45, 1025–1046. https://DOI.org/10.1002/(SICI)1097-0207(19990720)45:8%3C1025::AID-NME615%3E3.0.CO;2-G

  • [23] Kormi T. (2003). Modélisation numérique du gonflement des argiles non saturées. PhD Thesis, National School of Bridges and Roads, Paris, 153 pages. 2003.

  • [24] Ross PJ. (2003). Modeling soil water and solute transport – fast, simplified numerical solutions. Agr. J., 95, 1352–1361. DOI: 10.2134/agronj2003.1352

  • [25] Brooks R.H., Corey A.T. (1964). Hydraulic properties of porous media. Hydrology Paper, 3, Colorado State University, Fort Collins, 24 p.

  • [26] Varado N., Braud I., Ross P. J. and Haverkamp R. (2006). Assessment of an efficient numerical solution of the 1D Richards equation on bare soil. J. Hydrol., 323, 244–257. DOI: 10.1016/j.jhydrol.2005.07.052

  • [27] Basha, H. A. (1999). Multidimensional linearized nonsteady infiltration with prescribed boundary conditions at the soil surface. Water Resour. Res., 25(1), 75–93. https://DOI.org/10.1029/1998WR900015

  • [28] Farthing M. W., Kees C. E., Coffey T. S., Kelley C. T. and Miller C. T. (2003). Efficient steady state solution techniques for variably saturated groundwater flow. Adv. Water Resour., 26(8), 15 833–849. DOI:10.1016/S0309-1708(03)00076-9.

  • [29] Bunsri T., Sivakumar M., and Hagare D. (2008). Numerical modeling of tracer transport in unsaturated porous media. J. Appl. Fluid Mech., 1(1), 62–70. https://DOI.org/10.1007/s11242-013-0138-x

  • [30] Witelski T.P. (1997). Perturbation analysis for wetting front in Richards’equation. Transport Porous Med. 27, pp. 121–134. DOI: 10.1023/A:1006513009125

  • [31] Zadjaoui A. (2009). Etude du transfert hydrique dans les sols non saturés: échange sol – atmosphère. PhD Thesis. Department of Civil Engineering, University of Tlemcen. Algeria.

  • [32] Zadjaoui A. and Houmadi Y. (2019). Theoretical and experimental aspects of flow tests in situ, Algérie équipement, 28 (60), 61-69.

  • [33] Kevorkian J. and Cole J. D. (1996). Multiple Scale and Singular Perturbation Methods. Springer-Verlag. New York. DOI: 10.1007/978-1-4612-3968-0

  • [34] Nayfeh A. H. (1973). Perturbation Methods. John Wiley & Sons, New York. 1973. DOI:10.1002/9783527617609

  • [35] Nayfeh A. H. and Mook D. T. (1979). Nonlinear Oscillations. John Wiley & Sons, New York. DOI:10.1002/9783527617586

  • [36] He, J.H. Homotopy perturbation technique. Comput. Meth. Applied Mech. Eng., 178 (3-4): 257-262. https://DOI.org/10.1016/S0045-7825(99)00018-3

  • [37] He, J.H. (2006). New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B., 20 (18): 2561-2568. https://DOI.org/10.1142/S0217979206034819

  • [38] Barari A., Omidvar M., Ghotbi A. R. and Ganji D. D. (2008). Application of homotopy perturbation method and variational iteration method to nonlinear oscillator differential equations. Acta Appl. Math. 104, 161–171. https://DOI.org/10.1007/s10440-008-9248-9

  • [39] Barari A., Ghotbi A. R., Farrokhzad F. and Ganji D. D.(2008). Variational iteration method and Homotopy-perturbation method for solving different types of wave equations. J. Appl. Sci., 8, 15 120–126. 2008b. DOI: 10.3923/jas.2008.120.126

  • [40] Ghotbi A. R., Avaei A., Barari A. and Mohammadzade M. A. (2008). Assessment of He’s homotopy perturbation method in Burgers and coupled Burgers’ equations. J. Appl. Sci., 8, 322–327. 2008a. DOI: 10.3923/jas.2008.322.327

  • [41] Ghotbi A. R., Barari A., and Ganji D. D. (2008). Solving ratio-dependent predator–prey system with constant effort harvesting using homotopy perturbation method. J. Math. Prob. Eng. http://dx.DOI.org/10.1155/2008/945420

  • [42] He, J.H. (1999). Variational iteration method: A kind of nonlinear analytical technique: Sorne examples. Int. Non!. Mech., 344: 699-708. DOI:10.1016/S0020-7462(98)00048-1

  • [43] He, J.H. (2000). Variational iteration rnethod for autonomous ordinary differential systems. Applied Math. Comput., 114 (2-3): 115-123. https://DOI.org/10.1016/S0096-3003(99)00104-6

  • [44] Momani S. and Abuasad S. (2006). Application of He’s variational iteration method to Helmholtz equation. Chaos Soliton Fract. 27. p. 1119–1123. DOI: 10.1016/j.chaos.2005.04.113

  • [45] Sweilam N. H. and Khader M. M. (2007). Variational iteration method for one dimensional nonlinear thermo-elasticity. Chaos Soliton Fract., 32, 145–149. http://dx.DOI.org/10.1016/j.chaos.2005.11.028

  • [46] Barari A., Omidvar M., Ganji D. D. and Tahmasebi Poor A. (2008). An Approximate solution for boundary value problems in structural engineering and fluid mechanics. J. Math. Problems Eng. 1–13. http://dx.DOI.org/10.1155/2008/394103

  • [47] Asgari A., Bagheripourb M.H., Mollazadehb M. (2011). A generalized analytical solution for a nonlinear infiltration equation using the exp-function method. Scientia Iranica, Transactions A: Civil Engineering; 18 pp. 28–35. https://DOI.org/10.1016/j.scient.2011.03.004

  • [48] Shahrokhabadi S., Vahedifard F. and Bhatia M. (2017). A Fast-Convergence Solution for Modeling Transient Flow in Variably Saturated Soils Using the Isogeometric Analysis. Geotechnical Frontiers. GSP 280. Pp. 756-765. DOI: 10.1061/9780784480472.080

  • [49] Lu, N., and Godt, J. W. (2013). Hillslope hydrology and stability. Cambridge University Press. https://DOI.org/10.1017/CBO9781139108164.001

  • [50] Griffiths, D. V., Lu, N. (2005). Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int. J. Num. Anal. Methods. Geomech, 29(3), 249-267. https://DOI.org/10.1002/nag.413

  • [51] Vahedifard F., Leshchinsky D., Mortezaei K., Lu N. (2016). Effective stress-based limit-equilibrium analysis for homogeneous unsaturated slopes. Inter. J. Geom.16 (6). D4016003. DOI/10.1061/(ASCE)GM.1943-5622.0000554

  • [52] Vahedifard F., Mortezaei K., Leshchinsky B.A. (2016). Role of suction stress on service state behavior of geosynthetic-reinforced soil structures. Trans. Geotechnics, 8. p. 45-56. DOI: 10.1016/j.trgeo.2016.02.002

  • [53] Vanapalli S.K., Mohamed F.M.O. (2007). Bearing capacity of model footings in unsaturated soils. Experimental unsaturated soil mechanics, 483-493. 2007. https://DOI.org/10.1007/3-540-69873-6_48

  • [54] Vahedifard F, Robinson JD. (2015). Unified method for estimating the ultimate bearing capacity of shallow foundations in variably saturated soils under steady flow. Journal of Geotechnical and Geoenvironmental Engineering 142 (4). p.04015095. DOI: 10.1061/(ASCE)GT.1943-5606.0001445

  • [55] Vahedifard F., Leshchinsky BA., Mortezaei K., Lu N. (2015). Active earth pressures for unsaturated retaining structures. J. Geot. and Geoe. Eng. 141 (11). p.04015048. DOI: 10.1061/(ASCE)GT.1943-5606.0001356

  • [56] Lipnikova K., Moultona D. and Svyatskiya D. (2016). New preconditioning strategy for Jacobian-free solvers for variably saturated flows with Richards’ equation. Adv. Wat. Res. DOI: 10.1016/j.advwatres.2016.04.016

  • [57] Ould Amy M., J.P. Magnan. (1965). Numerical modeling of flow and deformation in earth dams constructed on soft soils. Series “Studies and research LPC” series Geotechnics, No. 10. 145p. 1991

  • [58] Liakopoulos, A.C. Theoretical solution of unsteady unsaturated flow problem in soils. Bull. Intern. Assoc. Sci. Hydrology. Vol. 10, pp. 5-39.

  • [59] H. R. Thomas, Y. He, M. R. Sansom, C. L. W. Li. (1996). On the development of a model of the thermo-mechanical-hydraulic behavior of unsaturated soils, Engineering Geology, Volume 41, Issues 1–4, Pages 197-218. https://DOI.org/10.1016/0013-7952(95)00033-X

  • [60] Benyelles Z. (1988). Modelling the flow of water into a partly saturated soil. Thesis of Master of Science by Research, 299 pages, University College, Cardiff; United Kingdom.

  • [61] Narasimhan, T.N. (1979). The significant of the storage parameter in saturated–unsaturated groundwater flow. Water Resources Res. 1-53 pp569-575. https://DOI.org/10.1029/WR015i003p00569

OPEN ACCESS

Journal + Issues

Search