Fire Safety Evaluation of an Underground Car Park Using Numerical Simulation

Open access


This paper presents a global fire risk assessment by using fire simulation in an existing underground parking. The simulation is conducted with the Fire Dynamics Simulator, a Computational Fluid Dynamics (CFD) tool and the simulations are performed on a threedimensional model of the parking. Multiple parameters and factors are taken into account in this complex assessment, such as geometry data, ventilation openings (both mechanical and natural), fire detection and fire suppression details. The output of the case study is represented by a large array of data: the time for sprinkler activation, maximum temperatures, smoke flow and overall fire evolution. The intention of the authors is to provide a global fire risk assessment of the parking, based on the fire safety engineering principles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dârmon R. (2017). Probabilistic Risk Assessment for an Art Timber Structure within an Atrium Space. In Advanced Engineering Forum (Vol. 21 pp. 50-57). Trans Tech Publications.

  • [2] Dârmon R. & Suciu M. (2018). Smoke ventilation strategy for a timber structure building. Procedia Manufacturing 22 249-255.

  • [3] McGrattan K. Hostikka S. McDermott R. Floyd J. Weinschenk C. & Overholt K. (2013). Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST special publication 1018(1) 175.

  • [4] McGrattan K. Klein B. Hostikka S. & Floyd J. (2013). Fire dynamics simulator (version 6) user’s guide. NIST special publication 1019(6).

  • [5] Eng T. (2011). PyroSim User Manual. The RJA Group Inc Chicago USA.

  • [6] Zhang X. G. Guo Y. C. Chan C. K. & Lin W. Y. (2007). Numerical simulations on fire spread and smoke movement in an underground car park. Building and environment 42(10) 3466-3475.

  • [7] NORMATIV de securitate la incendiu a parcajelor subterane pentru autoturisme indicativ NP 127:2009

  • [8] MZ M. T. & Spearpoint M. I. C. H. A. E. L. (2014). Development of fire scenarios for car parking buildings using risk analysis. Fire Safety Science 11 944-957.

  • [9] Normativ pentru proiectarea executarea şi exploatarea instalaţiilor de stingere a incendiilor indicativ NP 086 – 05.

  • [10]Normativ pentru proiectarea construcţiilor publice subterane indicativ NP 25 – 97.

  • [11]Truchot B. Fouillen F. & Collet S. (2018). An experimental evaluation of toxic gas emissions from vehicle fires. Fire Safety Journal.

  • [12] Collier P. C. R. (2011). Car Parks: Fires Involving Modern Cars and Stacking Systems. BRANZ.

  • [13] J. M. Watts Fire Scenarios Fire Technol. 1991 27 289–290.

  • [14] Jug A. Petelin S. & Bukovec P. (2010). Designing an underground car park fire scenarios on a probabilistic basis. Acta chimica Slovenica 57(1).

  • [15] Merci B. & Shipp M. (2013). Smoke and heat control for fires in large car parks: Lessons learnt from research? Fire safety journal 57 3-10.

  • [16]Annerel E. Taerwe L. Merci B. Jansen D. Bamonte P. & Felicetti R. (2013). Thermo-mechanical analysis of an underground car park structure exposed to fire. Fire Safety Journal 57 96-106.

  • [17]Márton T. Dederichs A. & Giuliani L. (2016). Modelling of Fire in an Open Car Park. Applications of Structural Fire Engineering.

  • [18] Jiang X. H. Zhu G. Q. Zhu H. & Li D. Y. (2018). Full-scale Experimental Study of Fire Spread Behavior of Cars. Procedia Engineering 211 297-305.

  • [19] Tohir M. & Zahirasri M. (2015). Multiple vehicle design fire scenarios in car parking buildings.

  • [20]Noordijk L. & Lemaire T. (2005). Modelling of fire spread in car parks. Heron 50(4) 209-218.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 182 14
PDF Downloads 288 157 18