Determination of Wheel-Rail Contact Characteristics by Creating a Special Program for Calculation

Open access

Abstract

The authors in this paper describe the steps of creating a special program in GUI tool in Matlab. The program is designed to calculate the main properties of wheel-rail contact zone, such as: contact ellipse dimensions, normal stress and friction coefficients. All the relevant equations, which were introduced by different researchers, are firstly presented and modified to be applicable to the programming environment, and then the program was built. In the end, the program working quality is discussed and some expected future developments on this program are suggested. The proposed program can make the comparison between theoretical and experimental results, when they are available, easier and faster.

References

  • [1] Vollebregt, E.A.H. & Kalker, J.J. (2013). CONTACT: Vollebregt & Kalker’s rolling and sliding contact model. Retrieved February 16, 2014, from http://www.kalkersoftware.org/

  • [2] Vollebregt, E.A.H. (2013). User guide for CONTACT, Vollebregt & Kalker’s rolling and sliding contact model. Delft: Vortech Computing.

  • [3] Vollebregt E.A.H. (2010). User Guide for Contact, J.J.Kalker’s Variational Contact Model, Delft: VORtech Computing.

  • [4] Jong Kim. (2012, April). Hertz’s contact ellipse between rail and wheel. Retrieved February 16, 2014, from http://www.mathworks.com/matlabcentral/fileexchange/36068-hertzs-contact-ellipse-between-rail-andwheel/content/contact_ellipse_calculator.m

  • [5] Sebeșan, I. (2011). Dynamics of railway vehicles (Dinamica vehiculelor feroviare). Bucharest: Matrixrom.

  • [6] Ayasse, J.B. (2006). Wheel-rail contact. In Iwnicki, S. (Eds.), Handbook of railway vehicle dynamics (pp. 85-120). CRC Press, Taylor & Francis group. Retrieved July 07, 2013, from CRC Press link: http://www.crcpress.com/product/isbn/9780849333217.

  • [7] Kalker, J.J. (1967). On the rolling contact of two elastic bodies in the presence of dry friction, PhD. Thesis. University of Technology. Delft, Netherlands.

  • [8] Kalker, J.J. (1967). A strip theory for rolling with slip and spin. Mechanics, Series B,70. (pp. 10-62). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.

  • [9] Chartet, M. (1950). La théorie statique du déraillement d’un èssieu. In Revue générale des chimen de fer, 3 August, s. 365. Paris. RGCF. (In French).

  • [10]Polach, O. (2005, March). Creep Forces in Simulation of Traction Vehicles Running On Adhesion Limit. Wear, Volume 258 (Issues 7-8), 992-1000. Retrieved July 23, 2010, from Sciencedirect database on the World Wide Web: www.sciencedirect.com. DOI: 10.1016/j.wear.2004.03.046.

  • [11]The MathWorks, Inc. (2012, March). MATLAB: Creating graphical user interface, The MathWorks, Inc.

  • [12]Knight, A. (2000). Basics of Matlab and Beyond. London, Washington D.C.: Chapman & Hall/CRC.

  • [13] ETF: Railway Technical Publications. (2004, May). Trailing stock: Wheels and wheelsets, conditions concerning the use of wheels of various diameters. UIC 510-2. France.

  • [14] Kalker, J.J. (1982). A fast algorithm for the simplified theory of rolling contact, Vehicle System Dynamics: International journal of vehicle mechanics and mobility, 11(1), 1-13. DOI: 10.1080/00423118208968684.

  • [15]Nielsen, J.B. (1998). New Developments in the Theory of Wheel/Rail Contact Mechanics. PhD. Thesis, Informatics and mathematical modeling, Tech. Univ. of Denmark, Lyngby.

  • [16] ***Matlab Official Website: http://www.mathworks.com/.

  • [17]Michel R. Hatch. (2001). Vibration Simulation Using MATLAB and ANSYS. Boca Raton, London, New York, Washington D.C.: Chapman & Hall/CRC.

  • [18] Steenbergen M. (2006). Modeling of Wheels and Rails Discontinuities in Dynamic Wheel-Rail Contact Analysis. Vehicle System Dynamics: International journal of vehicle mechanics and mobility, 44 (10), 763-787. DOI: 10.1080/00423110600648535.

  • [19]Hou, K., Kalousek, J. & Dong, R. (2003, October). A Dynamic Model for an Asymmetrical Vehicle/Track System. Journal of Sound and Vibration, 267 (3), 591-604. DOI: 10.1016/s0022-46X(03)00726-0.

  • [20] Kabo E., Nielsen J.C.O. & Ekberg A. (2006). Prediction of Dynamic Train-Track Interaction and subsequent material deterioration in the presence of insulated rail joints. International journal of vehicle mechanics and mobility, 44(1), 718-729. DOI: 10.1080/00423110600885715.

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 30
PDF Downloads 5 5 4