Preliminary Wrf-Arw Model Analysis of Global Solar Irradiation Forecasting

Open access

Abstract

The purpose of this research is focused on the evaluation of short term global solar irradiation forecasting performance in order to assess the outcome of photovoltaic power stations. The paper presents a comparative analysis between the predicted irradiation obtained by numerical simulation and measurements. The simulation data is obtained from WRF-ARW model (Weather Research Forecasting-Advanced Research WRF), whose initial and boundary conditions are provided by the global forecasting model GFS. Taking into account the complexity of options for the physics models provided with WRF, we embarked upon a parametric analysis of the simulated solar irradiance. This complex task provides a better insight among the coupling of various physics options and enables us to find the best fit with the measured data for a specified site and time period. The present preliminary analysis shows that the accuracy of the computed global solar irradiance can be improved by choosing the appropriate built-in physics models. A combination of physics models providing the best results has been identified.

[1] Heinemann D., Lorenz E., Girodo M. (2006). Forecasting of solar radiation in: Dunlop, E.D., Wald, L., Suri, M. (Eds.), Solar Energy Resource Management for Electricity Generation from Local Level to GlobalScale. Nova Science Publishers, Hauppauge.

[2] Mellit A., Pavan A.M. (2010). Sol. Energy 84 (5), (pp. 807-821)

[3] IEA, (2007). Energy Technologies at the Cutting Edge, International Energy Agency, OECD Publication Service, OECD, Paris.

[4] Grell G., Dudhia J., Stauffer D. (1998). A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note, NCAR/TN-398+STR, USA,.

[5] Zamora R.J., Dutton E.G., Trainer M., McKeen S.A., Wilczak J.M., Hou Y.T. (2005). Mon. Weather Rev. 133, (pp. 783-792).

[6] Zamora R.J., Solomon S., Dutton E.G., Bao J.W., Trainer M., Portmann R.W., White A.B., Nelson D.W., McNider R.T. (2003). J. Geophys.Res. 108 (D2), 4050.

[7] Lorenz E., RemundJ., Muller S.C., Traunmuller W., Steinmaurer G., Pozo D., Ruiz-Arias J.A., Fanego V.L., Ramirez L., Romeo M.G., Kurz C., Pomares L.M., Guerrero C.G. (2009). Benchmarking of different approaches to forecast solar irradiance. In: 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany.

[8] Lorenz E., Hurka J., Heinemann D., Beyer H.G. (2009). IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 2 (1).

[9] Remund R., Perez Y., Lorenz E. (2008). Comparison of solar radiation forecasts for the USA. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, (pp. 1.9-4.9).

[10] Perez Y., Ramos-Real F.J. (2009). Renew. Sust. Energy Rev., 13, (pp. 1058-1066).

[11] Ruiz-Arias J.A., Pozo-Vazquez D., Sanchez-Sanchez N., Montavez J.P., Hayas-Barru A., Tovar-Pescador J., Il Nuovo Cimento, 31 (5-6), (pp. 825-842).

[12] D. Santos-Muñoz, J. Wolff, C. Santos, García-Moya J.A., Nance L. (2009). Implementation and validation of WRF model as ensemble member of a probabilistic prediction system over Europe. In: 10th Annual WRF Users’ Workshop, Boulder, CO.

[13]ARW version3 Modeling System User's Guide. (2012). National Center for Atmospheric Research, http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html.

[14]Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.Y., Wang W., Powers, J.G. (2008). A description of the advanced research WRF Version 3. NCAR/TN-475+STR.

[15] Dudhia J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, (pp. 3077-3107).

[16]Chou M.D., Suarez M.J. (1994). An efficient thermal infrared radiation parameterization for use in generalcirculation models. NASA Tech. Memo. 104606, 3, pp. 85.

[17]Collins, W.D. et al. (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0), NCAR Technical Note, NCAR/TN-464+STR, pp. 226.

[18]Mlawer, E. J., Taubman S. J., Brown P. D., Iacono M. J., Clough S. A. (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), (pp. 16663-16682).

[19] Chou M.D., Suarez M. J. (1999) A solar radiation parametrization for atmospheric studies, NASA/TM-1999-104606, Vol. 15.

[20] Lacis A. A. and Hansen J. E. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere, J. Atmos. Sci., 31, (pp. 118-133).

[21]Dudhia J. Overview of WRF Physics, http://www.mmm.ucar.edu/wrf/users/tutorial/201201/Physics_Dudhia.ppt.pdf

[22] Stephens G. L. (1978). Radiation profiles in extended water clouds. Part II: Parameterization schemes, J. Atmos. Sci., 35, (pp. 2123-2132).

[23]Badescu V., Dumitrescu A. (2013). The CMSAF Hourly Solar Irradiance Database (Product CM54). Accuracy And Bias Corrections With Illustrations For Romania (South-Eastern Europe), Journal of Atmospheric and Solar-Terrestrial Physics, 93, (pp. 100-109).

Mathematical Modelling in Civil Engineering

The Journal of Technical University of Civil Engineering of Bucharest

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 18
PDF Downloads 15 15 5