Existence of Solutions for Some Nonlinear Elliptic Anisotropic Unilateral Problems with Lower Order Terms

Open access


In this paper, we prove the existence of entropy solutions for anisotropic elliptic unilateral problem associated to the equations of the form


where the right hand side f belongs to L1(Ω). The operator -i=1Niai(x,u,u) is a Leray-Lions anisotropic operator and ϕiC0(ℝ,ℝ).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Aharouch L Akdim Y. Strongly Nonlinear Elliptic Unilateral Problems without sign condition and L1 Data. Appl. Anal. (2005); 11-31.

  • [2] Akdim Y Azroul E Benkirane A. Existence Results for Quasilinear Degenerated Equations Via Strong Convergence of Truncations. Rev. Mat. Complut. (2001) 17; 359–379.

  • [3] Akdim Y Benkirane A El Moumni M. Existence results for nonlinear elliptic problems with lower order terms. Int. J. Evol. Equ. (2013) 8; 4: 257–276.

  • [4] Antontsev S Chipot M. Anisotropic equations: uniqueness and existence results. Differential Integral Equations (2008) 6; 401–419.

  • [5] Bendahmane M Karlsen KH. Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres. Electronic. J. Differential Equations (2006) 46; 1–30.

  • [6] Benkirane A Bennouna J. Existence of entropy solutions for nonlinear problems in Orlicz spaces. Abs. and Apl. Ann. (2002) 7; 85–102.

  • [7] Benkirane A Bennouna J. Existence and uniqueness of solution of unilateral problems with L1-data in Orlicz spaces. Ital. J. Pure Appl. Math. (2004) 16; 87-102.

  • [8] Bénilan P Boccardo L Gallouet T Gariepy R Pierre M Vázquez J. An L1-theory of existence and uniqueness of nonlinear elliptic equations. Ann. Sc. Norm. Sup. Pisa CL. IV(1995).; 22 : 240–273.

  • [9] Boccardo L Some nonlinear Dirichlet problems in L1 involving lower order terms in divergence form. Progress in elliptic and parabolic partial differential equations (Capri 1994) Pitman Res. Notes Math. Ser. 350 p. 43-57 Longman Harlow 1996.

  • [10] Boccardo L Gallouët T. Strongly nonlinear elliptic equations having natural growth terms and L1 data. Nonlinear Anal. T.M.A. (1992); 19: 573-578.

  • [11] Boccardo L Gallouët T Marcellini P. Anisotropic equations in L1. Differential Integral Equations (1996) 1; 209–212.

  • [12] Boccardo L Gallouët T Orsina L. Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. (1997) 73; 203–223.

  • [13] Boccardo L Murat F Puel J.-P. Existence of bounded solution for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. (1988) 152; 183–196.

  • [14] Di Castro A. Existence and regularity results for anisotropic elliptic problems. Adv. Nonlinear Stud. (2009)9; 367–393.

  • [15] Di Castro A. Anisotropic elliptic problems wih natural growth terms. Manuscripta Math. (2011) 135: 521–543 .

  • [16] Di Nardo R Feo F. Existence and uniqueness for nonlinear anisotropic elliptic equations. Arch. Math.(2014) 102; 141–153.

  • [17] Fragala I Gazzola F Kawohl B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincar Anal. Non Linéaire (2004) 5; 715–734.

  • [18] Guib O Mercaldo A. Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Commun. Pure Appl. Anal. (2008) 1; 163–192.

  • [19] Leray J. Lions L. Quelques Mthodes de Rsolution des Problmes aux Limites Non linaires. Dunod Paris 1968.

  • [20] J. P. Gossez and V. Mustonen Variational inequalities in Orlicz-Sobolev spacesNonlinear Anal. (1987) 11; 379-492.

  • [21] Li FQ. Anisotropic elliptic equations in Lm. J. Convex Anal. (2001) 2; 417–422.

  • [22] M.Troisi. Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat (1969) 18; 3–24.

  • [23] Yazough C Azroul E Redwane H. Existence of solutions for some nonlinear elliptic unilateral problems with measure data. E. J.Q. Theo. of Di. Equations. (2013) 43; 1–21.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 20
PDF Downloads 117 117 20