Synthesis and characterization of cadmium chlorapatite Cd5(PO4)3Cl

Open access

Abstract

One of the most effective methods for the immobilization of toxic metals involves the use of minerals from the apatite supergroup. The formation of cadmium chlorapatite may lead to successful entrapping of cadmium; thus, it is important to examine the solubility constant to determine the stability of cadmium in the the apatite structure. Cadmium chlorapatite was synthetized and characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy. The solubility constant (log) Ksp of cadmium chlorapatite was -65.58. The Gibbs free energy of formation of cadmium chlorapatite reached -3950.48 kJ mol−1. The solubility constant turned out to be low but was enough for cadmium chlorapatiteto be considered a very stable compound..

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Chen Y-Y. Yu S-H. Jiang H-F. Yao Q-Z. Fu S-Q. & Zhou G-T. (2018). Performance and mechanism of simultaneous removal of Cd(II) and Congo red from aqueous solution by hierarchical vaterite spherulites Applied Surface Science 444 224-234. DOI:10.1016/j.apsusc.2018.03.081.

  • Corami A. Mignardi S. & Ferrini V. (2008). Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science 317(2) 402-408. DOI: 10.1016/j.jcis.2007.09.075.

  • Deng J. Q. Liu Y. G. Liu S. B. Zeng G. Tan X. Huang B. Tang X. Wang S. Hua Q. & Yan Z. (2017). Competitive adsorption of Pb(II) Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science 506 355-364. DOI: 10.1016/j.jcis.2017.07.069.

  • Drouet C. (2015). A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. The Journal of Chemical Thermodynamics 81 143-159. DOI: 10.1016/j.jct.2014.09.012.

  • Eighmy T.T. Crannel B.S. Butler L.G. Cartledge F.K. Emery E.F. Oblas D. Krzanowski J.E. Eusden J.D. Shaw J.E.L. & Francis C.A. (1997). Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environmental Science & Technology 31 3330-3338. DOI: 10.1021/es970407c.

  • Flis J. Manecki M. & Bajda T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl− mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta 75(7) 1858-1868. DOI: 10.1016/j.gca.2011.01.021.

  • Fu F. & Wang Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 407-418. DOI: 10.1016/j.jenvman.2010.11.011.

  • Handke M. Mozgawa W. & Nocuń M. (1994). Specific features of the IR spectra of silicate glasses. Journal of Molecular Structure 325 129-136. DOI:10.1016/0022-2860(94)80028-6.

  • Hara T. Kanai S. Mori K. Mizugaki T. Ebitani K. Jitsukawa K. & Kaneda K. (2006). Highly Efficient C-C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. The Journal of Organic Chemistry 71 7455-7462. DOI: 10.1021/jo0614745.

  • Huang P.M. & Gobran G.R. (2005). Biogeochemistry of Trace Elements in the Rhizosphere Elsevier Science Oxford. DOI: 10.1016/B978-0-444-51997-9.X5000-4.

  • Jeanjean J. McGrellis S. Rouchaud J.C. Fedoroff M. Rondeau S. Perocheau S. & Dubis A. (1996). A Crystallographic Study of the Sorption of Cadmium on Calcium Hydroxyapatites: Incidence of Cationic Vacancies. Journal of Solid State Chemistry 126 195-201. DOI: 10.1006/jssc.1996.0329.

  • Klee W.E. & Engel G. (1970). I.R. Spectra of the phosphate ions in various apatites. Journal Inorganic & Nuclear Chemistry 32 1837-1843. DOI: 10.1016/0022-1902(70)80590-5.

  • Lee H.H. Owens V.N. Park S. Kim J. & Hong C.O. (2018). Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium. Chemosphere 206 369-375. DOI: 10.1016/j.chemosphere.2018.04.176.

  • Lenoble V. Deluchat V. Serpaud B. & Bollinger J.C. (2003). Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta61(3) 267-276. DOI: 10.1016/S0039-9140(03)00274-1.

  • Ma Q.Y. Traina S.J. & Logan T.J. (1993). In situ lead immobilization by apatite. Environmental Science & Technology 27 1803-1810. DOI: 10.1021/es00046a007.

  • Matusik J. Bajda T. & Manecki M. (2012). Aqueous cadmium removal by hydroxylapatite and fluoroapatite. Geology Geophysics & Environment 38(4) 427-438. DOI: 10.7494/geol.2012.38.4.427.

  • Miretzky P. & Fernandez Cirelli A. (2008). Phosphates for Pb immobilization in soils. A review. Environmental Chemistry Letters 6 121-133. DOI: 10.1007/978-1-4020-9654-9_16.

  • Robie R.A. Hemingway B.S. & Fisher J.R. (1978). Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures U.S. Geological Survey Bulletin 1452 Washington.

  • Shirkhanloo H. Ghazaghi M. & Mousavi H.Z. (2016). Cadmium determination in human biological samples based on trioctylmethyl ammonium thiosalicylate as a task-specific ionic liquid by dispersive liquid-liquid microextraction method Journal of Molecular Liquids 218 478-483. DOI: 10.1016/j.molliq.2016.02.035.

  • Sternlieb M.P. Brown H.M. Schaeffer Jr. C.D. & Yoder C.H. (2009). The synthesis of apatites with an organophosphate and in nonaqueous media. Polyhedron 28 729-732. DOI: 10.1016/j.poly.2008.12.039.

  • Viipsi K. Sjöberg S. Tõnsuaadu K. & Shchukarev A. (2013). Hydroxy- and fluorapatite as sorbents in Cd(II)–Zn(II) multi-component solutions in the absence/presence of EDTA. Journal of Hazardous Materials 252-253 91-98. DOI: 10.1016/j.jhazmat.2013.02.034.

  • Wang Q. Yang L. Jia. F. Li Y. & Song S. (2018). Removal of Cd (II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. Journal of Molecular Liquids 263 526-533. DOI: 10.1016/j.molliq.2018.04.149.

  • Wong C.-W. Barford J.P. Chen G. & McKay G. (2014). Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. Journal of Environmental Chemical Engineering 2 698-707. DOI: 10.1016/j.jece.2013.11.010.

  • Wopenka B. & Pasteris J.D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C 25 131-143. DOI: 10.1016/j.msec.2005.01.008.

  • Zhu X.-H. Li J. Luo J.-H. Jin Y. & Zheng D. (2017). Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites. Journal of the Taiwan Institute of Chemical Engineers 70 200-208. DOI: 10.1016/j.jtice.2016.10.049.

Search
Journal information
Impact Factor


CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 16
PDF Downloads 32 32 19