Characteristics of sorbent products obtained by the alkaline activation of waste from waste incineration plants

Open access

Abstract

In Poland, by 2020 430,000 Mg of hazardous waste will be formed annually by the combustion of waste. This waste must be properly managed so as not to endanger the environment. One promising way to manage selected waste is to process it in the synthesis of materials characterised by sorption properties. The results presented in this paper concern the possibility of producing sorbents from waste materials marked with codes 190112 and 190114, which came from two waste incineration plants in Poland. Alkaline activation was performed using two methods: a) hydrothermal, in a solution of 8 M NaOH at 75°C for 24 h; and b) in an autoclave, using a solution of 2 M NaOH at 140°C for 6 h. XRD analyses led to the identification of materials after synthesis of the following zeolite phases: analcime, chabazite and thomsonite. chabazite and analcime can be valuable absorbent materials.

5. References

  • Aiello, R., Giordano, G., & Testa, F. (2002). Impact of zeolites and other porous materials on the new technologies at the beginning of the new millennium; Elsevier Science.

  • Armbruster, T., & Gunter, M. E. (2001). Crystal structures of natural zeolites. In D.L. Bish & D.W. Ming (Eds) Natural Zeolites: Occurrence, Properties, Applications. Washington, D.C., pp.1-67. Reviews in Mineralogy and Geochemistry.

  • Belviso, C., Cavalcante, F., & Fiore, S. (2010). Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using sea water instead of distilled water. Waste Management, 30(5), 839-847. DOI: 10.1016/j.wasman.2009.11.015.

  • Chang, K. L., & Shih, W. H. (1998). A general method for the conversion of fly ash into Zeolites as ion exchangers for cesium. Industrial & Engineering Chemistry Research, 37(1), 71-78. DOI: 10.1021/ie970362o.

  • Charles, H. K. Lam, Alvin, W. M. Ip., Barford, J. P., & McKay, G. (2010). Use of Incineration MSW Ash: A Review. Sustainability, 2, 1943-1968. DOI:10.3390/su2071943.

  • Chiang, Y. W., Ghyselbrecht K., Santos, R. M., Meesschaert, B., & Martens, J. A. (2012). Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today, 190(1), 23-30. DOI: 10.1016/j.cattod.2011.11.002.

  • Chica, A. (2013). Zeolites: Promised Materials for the Sustainable Production of Hydrogen. ISRN Chemical Engineering, DOI: 10.1155/2013/907425.

  • Derkowski, A., Franus, W., Beran, E., & Czimerova, A. (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166, 47-54. DOI: 10.1016/j.powtec.2006.05.004.

  • Fotovat, F., Kazemian, H., & Kazemeini, M. (2009). Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Materials Research Bulletin, 44(2), 913-917. DOI: 10.1016/j.materresbull.2008.08.008.

  • Franus, W., Wdowin, M., & Franus, M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186, 5721-5729. DOI: 10.1007/s10661-014-3815-5.

  • Grela, A., Łach, M., Mikuła, J., & Hebda, M. (2016 a). Thermal analysis of the products of alkali activation of fly ash from CFB boilers. Journal of Thermal Analysis and Calorimetry, 123(2), 1609-1621. DOI: 10.1007/s10973-016-5257-5.

  • Grela, A., Hebda, M., Łach, M., & Mikuła, J. (2016 b). Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous and Mesoporous Materials, 220, 155-162. DOI: 110.1016/j.micromeso.2015.08.036.

  • Grela, A., & Bajda, T., (2017). Usuwanie wybranych związków biogennych z roztworów wodnych z wykorzystaniem metakaolniu i zmodyfikowanego metakaolinu. Inżynieria Ekologiczna, 18(2), 30–38. DOI: 10.12912/23920629/68339.

  • Gupta, V. K., Ali, I., Saini, V.K, Van Gerven. T., Van Bruggen, B. D., & Vandecasteele, C. (2005). Removal of dyes from wastewater using bottom ash. Industrial & Engineering Chemistry Research, 44(10), 3655-3664. DOI: 10.1021/ie0500220.

  • Hollman, G. C., Steenbruggen, G., & Janssen-Jurkovicova, M. (1999). A two step process for the synthesis of zeolites from coal fly ash. Fuel, 78 (10), 1225-123. DOI: 10.1016/S0016-2361(99)00030-7.

  • Inada, M., Eguchi, Y., Enomoto, N., & Hojo, J. (2005). Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel, 84 (2-3), 299-304. DOI: 10.1016/j.fuel.2004.08.012.

  • Łach, M., Mikuła, J., & Hebda, M. (2016). Thermal analysis of the by-products of waste combustion. Journal of Thermal Analysis and Calorimetry, 125(3), 1035-1045. DOI: 10.1007/s10973-016-5512-9.

  • Łącka-Matusiewicz, M., & Fraś, K. (2012), Wpływ zagospodarowania ubocznych produktów spalania węgla na redukcję emisji CO2 do środowiska [w:] Popioły z energetyki. XI Międzynarodowa Konferencja pt. „Popioły z Energetyki”. (red.) Szczygielski T., 19, 131-150.

  • Miyake, M., Tamura, Ch., & Matsuda, M. (2002). Resource Recovery of Waste Incineration Fly Ash: Synthesis of Zeolites A and P. Journal of the American Ceramic Society, 85(7), 1873-75. DOI: 10.1111/j.1151-2916.2002.tb00368.x.

  • Morency, J. R., Panagiotou, T., & Senior, C. L. (2002). Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation, 39(7), 24-26. DOI: 10.1016/S0015-1882(02)80207-5.

  • Pająk, T. (1996). Dioksyny w procesie spalania odpadów komunalnych – zagrożenia, normy, aktualna sytuacja, przeciwdziałanie. Rocznik Państwoweg Zakładu Higieny, 47(1), 105-119.

  • Querol, X., Alastuey, A., Fernandez-Turiel, J. L., & Lopez-Soler, A. Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel, 74(8), 1226-1231.

  • Rodziewicz, J., Mielcarek, A., Kłodowska, I., Janczukowicz, W., Choińska-Żurek, E., & Wolter A. (2016). Usuwanie fosforu na filtrach z wypełnieniem z granulatu z popiołów ze spalania osadów ściekowych. Inżynieria Ekologiczna, 48, 186-190. DOI: 10.12912/23920629/63273.

  • Sallam, M., Carnahan, R. P., Zayed, A., & Sunol, S. (2008). Recycling of Municipal Solid Waste Ash through an Innovative Technology to Produce Commercial Zeolite material of High Cation Exchange Capacity, Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008, Philadelphia, Pennsylvania, USA. DOI: 10.1115/NAWTEC16-1919.

  • Shim, Y. S., Kim, Y. K., Kong, S. H., Rhee, S. W., & Lee, W. K. (2003). The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Management, 23(9), 851-857. DOI: 10.1016/S0956-053X(02)00163-0.

  • Tamura, Ch., Matsuda, M., & Miyake, M. (2006). Conversion of Waste Incineration Fly Ash into Zeolite A and Zeolite P by Hydrothermal Treatment. Journal of the Ceramic Society of Japan, 114(2), 205-209. DOI: 10.2109/jcersj.114.205.

  • Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 106(3), 896-910. DOI: 10.1021/cr040204o.

  • Wdowin, M., Franus, W., & Panek, R. (2012). Preliminary results of usage possibilities of carbonate and zeolitic sorbents in CO2 capture. Fresenius Environmental Bulletin, 21(12), 3726-3734.

  • Wdowin, M., Wiatros-Motyka, M., Panek, R., Stevens L. A., Franus W., & Snape C. E. (2014). Experimental study of mercury removal from exhaust gases. Fuel, 128, 451-457. DOI: 10.1016/j.fuel.2014.03.041.

  • Wielgosiński, G., & Naniecińska, O. (2016). Spalanie odpadów komunalnych – perspektywa roku 2020. Nowa Energia, 2, 1-15.

  • Yang, G. C., & Yang, T. Y. (1998). Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials, 62, 75-89. DOI: 10.1016/S0304-3894(98)00163-0.

Mineralogia

The Journal of Mineralogical Society of Poland

Journal Information


CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 1 1 1