Geochemistry, mineral chemistry and P-T evaluation of metasediments of Bahram-Gur complex, ES Sanandaj-Sirjan zone, Iran

Hadiseh Rahimi Sadegh 1 , Hesam Moeinzadeh 1  and Kazu Nakashima 2
  • 1 Department of Geology, Kerman
  • 2 Earth and Environmental Sciences Department, Yamagata, Japan

Abstract

The Bahram-Gur area in the southeastern part of the Sanandaj – Sirjan metamorphic zone, contains metabasites and metasediments. The metasedimentary rocks are mainly garnet schists and garnet-staurolite schists that were metamorphosed under amphibolite facies conditions. The rocks consist of garnet ± staurolite, biotite, muscovite, chlorite and quartz. The geochemistry of the Bahram-Gur metasediments classifies them as quartziferous sedimentary rocks. The protoliths of the metasedimentary rocks were close to greywackes from an ensialic arc basin depositional setting, with a source comprising mostly mixture of acid and intermediate magmatic rocks in the upper continental crust. The metamorphic conditions of formation of the Bahram-Gur metasedimentary are investigated by geothermobarometric methods. The results show that the metasedimentary rocks formed at temperatures of 600-750°C and pressures of 5-7.5 kbar.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6), 692-725. DOI: https://doi.org/10.1017/S001675681100046X.

  • Alavi, M. (1994). Tectonics of the Zagros orogenic belts of iran: new data and interpretation. Tectonophysics, 229, 211-238: DOI : https://doi.org/10.1016/0040-1951(94)90030-2.

  • Armstrong-Altrin, J. S. (2015). Evaluation of two multidimen-sional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57 (11-12),1444-1459. DOI: https://doi.org/10.1080/00206814.2014.936055.

  • Barker, A. (1990). Introduction to metamorphic textures and microstructures: Blackie, New York, 162. Bozyazı ve Anamur Arasındaki Bölgenin Jeolojisi: MTA Rep, 82.

  • Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2), 210-265. DOI: https://doi.org/10.1139/e81-019.

  • Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. In: Gupta, H.K., Delany, F.M. (Eds.), Zagros Hindukosh, Himalaya Geodynamic Evolution, American Geophysical Union, Washington, DC, 5-32.

  • Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., & Raith, M. (1992a). Non-ideal mixing in the phlogopiteannite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology, 111, 87-93. DOI: 10.1007/BF00296580.

  • Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., & Raith, M. (1992b). Non-ideal mixing in the phlogopiteannite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology, 111, 87-93. DOI: 10.1007/BF00296580

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 92,181-193.

  • Bhatia, M. R., & Crook, K. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181-193. DOI: https://doi.org/10.1007/BF00375292.

  • Bucher, K., &Fery, M. (1994). Petrogenesis of Metamorphic Rocks. 6thedition.Springer-Verlag, Berlin, 318 pp.

  • Bucher, K., & Grapes, R. (2011). Petrogenesis of Metamorphic Rocks. Springer-Verlag Berlin Heidelberg, 441 p.

  • Cope, T., Ritts, B. D., Darby, B. J., Fildani, A., & Graham, S. A. (2005). Late Paleozoic sedimentation on the Northern margin of the North China Block: implications for regional tectonics and climate Change. International Geology Review, 47, 270-296. DOI: https://doi.org/10.2747/0020-6814.47.3.270.

  • Dasgupta, S., Sengupta, P., Guha, D., & Fukuoka, M. (1991). A refined garnet-biotite Fe− Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology, 109(1), 130-137. DOI: https://doi.org/10.1007/BF00687206.

  • Deer, W., Howie, R. & Zussman, J. (1996). The rockforming minerals Vol 5: Nonsilicates, Apatite: New York: Londman.

  • Degraaff-surpless, K., Graham, S. A., Wooden, J. L., & McWiliams, M. O. (2002). Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc-fore arc system. Geology Society of American Bulltain 114, 1564-1580 DOI:https://doi.org/10.1130/0016-7606(2002)114<1564:DZPAOT> 2.0.CO;2.

  • Dickinson, W.R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695-707.

  • Dickinson, W.R. (1985). Interpreting provenance relation from detrital modes of sandstone. In Zuffa, G.G. (ed). Provenance of Arenites: NATO ASI Series, C148, D. Reidel Publishing Company, Dordrecht, 333-363.

  • Dymek, R. F. (1983). Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses’ West Greenland. American Mineralogist, 6, 880-399.

  • Engel, A. J., & Engel, C. G. (1960). Progressive Metamorphism and Granitizationof The Major Paragniess, Northwest Adirondack Mountains, New York: Part II: Mineralogy. Geological society of America bulletin, 71(1), 1-58.

  • Fergusson, C. L., Nutman, A. P., Mohajjel, M., & Bennett, V. C. (2016). The Sanandaj–Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U–Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis. Gondwana Research, 40, 43-57. DOI: https://doi.org/10.1016/j.gr.2016.08.006.

  • Ferry, J. t., & Spear, F. (1987). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66(2), 113-117. DOI: https://doi.org/10.1007/BF00372150.

  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of Geological Society of London, 144: 531-542.

  • Floyd P.A., Winchester J.A., & Park R.G. (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, N. W. Scotland. Precambrian Research 45, 203-214. DOI: https://doi.org/10.1016/0301-9268(89)90040-5.

  • Ghazi, J.M., & Moazzen, M. (2015). Geodynamic evolution of the Sanandaj-Sirjan zone, Zagros Orogen, Iran. Turkish Journal of Earth Sciences, 24(5), 513-528. DOI: doi:10.3906/yer-1404-12.

  • Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3), 316-328. DOI: https://doi.org/10.2138/am.2005.1498.

  • Henry, D.J., & Guidotti, C.W. (2002). Ti in biotite from metapelitic rocks: temperature effects, crystallochemical controls, and petrologic applications. American Mineralogist, 87, 375-382.

  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of sedimentary Petrology, 85, 820-829. DOI: https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.

  • Hodges, K., & Spear, F. S. (1982). Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67(11-12), 1118-1134.

  • Hoisch, T. D. (1991). Equilibria within the mineral assemblage quartz+ muscovite+ biotite+ garnet+ plagioclase, and implications for the mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contributions to Mineralogy and Petrology, 108(1-2), 43-54. DOI: https://doi.org/10.1007/BF00307325.

  • Holail, H.M., & Moghazi, A.M. (1998). Provenance, tectonic setting and geochemistry of greywackes and siltstones of the Late Precambrian Hammamat Group, Egypt. Sedimentary Geology 116, 227-250. DOI: https://doi.org/10.1016/S0037-0738(97)00104-8.

  • Holdaway, M.J. (2001). Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86, 1117-1129. DOI: https://doi.org/10.2138/am-2001-1001

  • Holdaway, M., & Lee, S. M. (1977). Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contributions to Mineralogy and Petrology, 63(2), 175-198.

  • Holland, T.J.B., & Powell, R. (1985). An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. Journal of Metamorphic Geology, 3, 343-370.

  • Holland, T.J.B., & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest: Journal of Metamorphic Geology, 16(3), 309-343. DOI: https://doi.org/10.1111/j.1525-1314.1998.00140.x.

  • Hooper, R. J., Baron, I., Hatcher, J. R. R. D., & Agah, S. (1994). The development of the southern Tethyan margin in Iran after the breakup of Gondwana: implications of the Zagros hydrocarbon province. Geosciences, 4, 72-85.

  • Horton, B.K., Hassanzadeh, J., Stockli, D.F., Axen, G.J., Gillis, R.J., Guest, B., Amini, A., Fakhari, M., Zamanzadeh, S.M., & Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451(1-4), 97-122. DOI: 10.1016/j.tecto.2007.11.063

  • Ivan, P., Meres, s., Putis, M., & Kohut, M. (2001). Early Paleozoic metabasalts and metasedimentary rocks from the Male Karpaty MTS (Western Carpathians): evidence for rift basin and ancient oceanic crust. Geologica CARPATHICA, 52, 2, BRATISLAVA, 67-78.

  • Kwak, T. A. (1968). Ti in biotite and muscovite as an indication of the metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochimica et Cosmochimica Acta, 32(11), 1222-1229. DOI: https://doi.org/10.1016/0016-7037(68)90124-5.

  • Maas, R., & McCulloch, M.T. (1991). The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes and U–Pb ages for detrital zircons. Geochimica et CosmochimicaActa, 55, 1915-1932. DOI: https://doi.org/10.1016/0016-7037(91)90033-2.

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2, DOI: https://doi.org/10.1029/2000GC000109

  • McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments, vol. 284. Geological Society of America, Special Paper, pp. 21-40.

  • Miyashiro, A. (1973). Metamorphism and Metamorphic Belts. G. Allen and Unwin, London, pp. 492.

  • Mohajjel, M., & Fergusson, C. L. (2014). Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56, 263-287. DOI: 10.1080/00206814.2013.853919.

  • Mohajjel, M., Fergusson, C., & Sahandi, M. (2003). Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21 (4), 397-412. DOI: https://doi.org/10.1016/S1367-9120(02)00035-4.

  • Newton, R.C., & Haselton, H.T. (1981). Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In: Newton R.C. (Ed.). Thermodynamics of Minerals and Melts: New York (Springer-Verlag), p.131-147. Ky version of the GASP geobarometer; expressions are taken from the GPT MS Excel program of J.Reche & F.J.Martinez (1996).

  • Passchier, C. W., & Trouw, R. A. (2005). Microtectonics (Vol. 1): Springer Science & Business Media, 366 pp.

  • PatiñoDouce, A. E. (1993). Titanium substitution in biotite: an empirical model with applications to thermometry, O2, and H2O barometries, and consequences form biotite stability. Chemical Geology, 108, 133-162. DOI: https://doi.org/10.1016/0009-2541(93)90321-9.

  • Perchuk, L., & Lavrent’Eva, I. (1983). Experimental investigation of exchange equilibria in the system cordieritegarnet-biotite. Kinetics and equilibrium in mineral reactions (pp. 199-239): Springer.

  • Rieder, M., Cavazzini, G., D’yakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., . . . Radoslovich, E. W. (1998). Nomenclature of the micas. Clays and clay minerals, 46(5), 586-595. DOI: https://doi.org/10.1346/CCMN.1998.0460513.

  • Robert, J.L. (1976). Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17, 213-227. DOI: https://doi.org/10.1016/0009-2541(76)90036-X.

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology,67, 119-139. DOI: https://doi.org/10.1016/0009-2541(88)90010-1.

  • Sabzehi, M. (1997). Geological map of GolGohar, 1/100000. Geological Survey of Iran.

  • Shahabpour, J. (2005). Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24, 405-417. DOI: https://doi.org/10.1016/j.jseaes.2003.11.007.

  • She, Z. B., Ma, C. Q., Mason, R., Li, J. W., Wang, G. C., & Lei, Y. H. (2006). Provenance of the Triassic Songpan -Ganzi flysch, west China. Chemical Geology 231, 159-175. DOI: 10.1016/j.chemgeo.2006.01.001.

  • Sheikholeslami, M.R. (2015). Deformations of Palaeozoic and Mesozoic rocks in southern Sirjan,Sanandaj-Sirjan Zone, Iran. Journal of Asian Earth Sciences 106, 130-149. DOI: https://doi.org/10.1016/j.jseaes.2015.03.007.

  • Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths (Vol. 1): Mineralogical Society of America Washington, DC, 799 p., ISBN 0-939950-34-0.

  • Spear, F. S., & Peacock, S. M. (1989). Metamorphic pressure-temperature-time paths. American Geophysical Union, Washington, D. C. 102 p.

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42, 313-345.

  • Sun, W. H., Zhou, M. F., Yan, D. P., Li, J. W., & Ma, Y. X. (2008). Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China)”. Precambrian Research 167, 213-236. DOI:10.1016/j.precamres.2008.08.001.

  • Taylor, S.T., & McLennan, S.M. (1985). The Continental Crust: its Composition and Evolution. Blackwell Scientific, Oxford.

  • Tatsumi, Y., & Eggins, S. (1995). Subduction Zone Magmatism”. Blackwell Science, Cambridge, MA 211pp.

  • Thompson, P. (1976). Isograd patterns and pressure-temperature distributions during regional metamorphism. Contributions to Mineralogy and Petrology, 57(3), 277-295. DOI: https://doi.org/10.1007/BF03542938.

  • Totten M.W., Hanan M.A., & Weaver B.L. (2000). Beyond the whole-rock geochemistry of shales:The importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits. Geological Society of America Bulletin, 112, 1012-1022. DOI: https://doi.org/10.1130/0016-7606(2000)112<1012:BWGOST>2.0.CO;2.

  • Wu, C.M (2015a). Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176. DOI:10.1111/jmg.12115.

  • Wu, C.M., Zhang, J., & Ren, L.D. (2004a). Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites. Journal of Petrology, 45(9), 1907-1921. DOI:10.1093/petrology/egh038.

  • Wu C.M., Zhao G.C. (2007a). The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos, 97(3-4),.365-372. DOI:10.1016/j. lithos.01.003.

OPEN ACCESS

Journal + Issues

Search