Efficiency of Pb(II) and Mo(VI) Removal by Kaolinite Impregnated with Zero-Valent Iron Particles

Open access


In this work, kaolinite modified with zero-valent iron was synthesized and used as a sorbent for Pb(II) and Mo(VI) removal from aqueous solutions. The obtained material was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The methods revealed successful modification by the Fe0particles precipitation on the surface of well-ordered kaolinite. The sorption experiment results showed a significant increase of sorption capacity in relation to the raw kaolinite. The kaolinite with 25% content of Fe0was found to be the best material for Pb(II) and Mo(VI) removal, resulting in approximately 500 mmol·kg-1and 350 mmol·kg-1sorption, respectively. The possible mechanisms responsible for metals’ removal were identified as reduction by Fe0‘core’ and adsorption on the iron hydroxides ‘shell’. The study indicated that the obtained material is capable of efficient Pb(II) and Mo(VI) removal and may be an interesting alternative to other methods used for heavy metals’ removal.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arancibia-Miranda N. Baltazar S. E. García A. Romero A. H. Rubio M. A. & Altbir D. (2014). Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Materials Research Bulletin 59 341-348. DOI: 10.1016/j.materresbull.2014.07.045.

  • Azizian S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science 276 47-52. DOI: 10.1016/j.jcis.2004.03.048.

  • Balan E. Saitta A. M. Mauri F. & Calas G. (2001). First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist 86 1321-1330. DOI: 10.2138/am-2001-11-1201.

  • Bhattacharyya K. G. & Gupta S. S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm kinetics and thermodynamics of interactions. Adsorption 12(3) 185-204. DOI:10.1007/s10450-006-0145-0.

  • Bhattacharyya K. G. & Gupta S. S. (2007). Adsorptive accumulation of Cd(II) Co(II) Cu(II) Pb(II) and Ni(II) from water on montmorillonite: Influence of acid activation. Journal of Colloid and Interface Science 310(2) 411-424. DOI: 10.1016/j.jcis.2007.01.080.

  • Crane R. & Scott T. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials 211-212 112-125. DOI: 10.1016/j.jhazmat.2011.11.073.

  • Erdem E. Karapinar N. & Donat R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science 280( 2) 309-314. DOI: 10.1016/j.jcis.2004.08.028.

  • Grieger K. Fjordbøge A. Hartmann N. Eriksson E. Bjerg P. & Baun A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?. Journal of Contaminant Hydrology 118 165-183. DOI: 10.1016/j.jconhyd.2010.07.011.

  • Hudcova B. Veselska V. Filip J. Cíhalova S. & Komarek M. (2016). Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis. Chemosphere 168 539-548. DOI: 10.1016/j.chemosphere.2016.11.031.

  • Kim S. A. Kamala - Kannan S. Lee K.- J. Park Y.- J. Shea P. J. Lee W.- H. Kim H.- M. & Oh B.- T. (2013). Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chemical Engineering Journal 217 54-60. DOI: 10.1016/j.cej.2012.11.097.

  • Koteja A. Biskup I. Góra K. & Matusik J. (2015). Organo-kaolinite as an adsorbent of Cr(III) and Ni(II) ions. In Bajda T. Hycnar E. (Eds.) Sorbenty mineralne 2015: surowce energetyka ochrona środowiska nowoczesne technologie 131-143 Kraków Wydawnictwo AGH.

  • Koteja A. & Matusik J. (2015). Di- and triethanolamine grafted kaolinites of different structural order as adsorbents of heavy metals. Journal of Colloid and Interface Science 455 83-92. DOI: 10.1016/j.jcis.2015.05.027.

  • Leupin O. X. & Hug S. J. (2005). Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research 39 1729-1740. DOI: 10.1016/j.watres.2005.02.012.

  • Li S. Wang W. Liang F. & Zhang W. (2016). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials 322 163-171. DOI: 10.1016/j.jhazmat.2016.01.032.

  • Liu J. Yuan S. W. Du H. Y. & Jiang X. Y. (2014). Adsorption of Cd(II) from Aqueous Solution by Magnetic Graphene. Advanced Materials Research 881-883 1011-1014. DOI: 10.4028/www.scientific.net/AMR.881-883.1011.

  • Matusik J. (2014). Arsenate orthophosphate sulfate and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal 246 244-253. DOI: 10.1016/j.cej.2014.03.004.

  • Meunier N. Drogui P. Montane C. Hausler R. Mercier G. & Blais J. F. (2006). Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. Journal of Hazardous Materials 137 581-590. DOI: 10.1016/j.jhazmat.2006.02.050

  • Oehmen A. Viegas R. Velizarov S. Reis M. A. M. & Crespo J. G. (2006). Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination 199 405-407. DOI: 10.1016/j.desal.2006.03.091.

  • Patnukao P. Kongsuwan A. & Pavasant P. (2008). Batch studies of adsorption of copper and Pb(II) on activated carbon from Eucalyptus camaldulensis Dehn bark. Journal of Environmental Sciences 20 1028-1034. DOI: 10.1016/S1001-0742(08)62145-2.

  • Ponder S. Darab J. & Mallouk T. (2000). Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported Nanoscale Zero-valent Iron. Environmental Science & Technology 34 2564-2569. DOI: 10.1021/es9911420.

  • Prabu D. & Parthiban R. (2013). Synthesis and characterization of nanoscale zero-valent iron (NZVI) nanoparticles for environmental remediation. Asian Journal of Pharmacy and Technology 3(4) 181-184.

  • Ramos M. A. V. Yan W. L. Li X. Q. Koel B. E. & Zhang W. X. (2009). Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. Journal of Physical Chemistry C 113 14591-14594. DOI:10.1021/jp9051837.

  • Ren X. M. Li J. X. Tan X. L. & Wang X. K. (2013). Comparative study of graphene oxide activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions 42 5266-5274. DOI: 10.1039/C3DT32969K.

  • Rui M. Buruberri L. H. Seabra M. P. & Labrincha J. A. (2016). Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters Journal of Hazardous Materials 318 631-640. DOI: 10.1016/j.jhazmat.2016.07.059.

  • Rybka K. (2017). Efektywność oczyszczania roztworów wodnych z wybranych anionów przez nanokompozyty otrzymane na bazie kaolinitu ze złoża Maria III (Efficiency of selected anions removal from aqueous solutions by nanocomposites derived from Maria III kaolinite.) MSc thesis AGH University of Science and Technology Krakow Poland. [in Polish].

  • Saada A. Breeze D. Crouzet C. Cornu S. & Baranger P. (2003). Adsorption of arsenic(V) on kaolinite and on kaolinite-humic acid complexes: Role of humic acid nitrogen groups. Chemosphere 51(8) 757-763. DOI: 10.1016/S0045-6535(03)00219-4.

  • Scott T. B. Popescu I. C. Crane R. A. & Noubactep C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of hazardous materials 186 280-287. DOI: 10.1016/j.jhazmat.2010.10.113.

  • Suraj G. Iyer C. S. P. & Lalithambika M. (1998). Adsorption of cadmium and copper by modified kaolinites. Applied Clay Science 13(4) 293-306. DOI: 10.1016/S0169-1317(98)00043-X.

  • Szala B. Bajda T. Matusik J. Zięba K. & Kijak B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials 202 115-123. DOI: 10.1016/j.micromeso.2014.09.033.

  • Unuabonah E. I. Adebowale K. O. Olu-Owolabi B. I. Yang L. Z. & Kong L. X. (2008). Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified kaolinite clay: equilibrium and thermodynamic studies. Hydrometallurgy 93 1-9. DOI: 10.1016/j.hydromet.2008.02.009.

  • Üzüm Ç. Shahwan T. Eroğlu A. E. Hallam K. R. Scott T. B. & Lieberwirth I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science 43(2) 172-181. DOI: 10.1016/j.clay.2008.07.030.

  • Üzüm Ç. Shahwan T. Eroğlu A. E. Lieberwirth I. Scott T. B. Hallam K. R. (2008). Application of zerovalent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. The Chemical Engineering Journal 144(2) 213-220. DOI: 10.1016/j.cej.2008.01.024.

  • Wang C. & Zhang W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBS. Environmental Science & Technology 31 2154-2156. DOI: 10.1021/es970039c.

  • Wang J. Liu G. Li T. Zhou C. & Qi C. (2015). Zero-Valent Iron Nanoparticles (NZVI) Supported by Kaolinite for CuII and NiII Ion Removal by Adsorption: Kinetics Thermodynamics and Mechanism. Australian Journal of Chemistry. 68 1305-1315. DOI: 10.1071/CH14675.

  • Xu D. Tan X. Chen C. & Wang X. (2008). Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials 154 1-3 407-416. DOI: 10.1016/j.jhazmat.2007.10.059.

  • Yan W. Ramos M. A. V. Koel B. E. &. Zhang W. X. (2012). As(III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron microscopy. Journal of Physical Chemistry C 116 5303-5311. DOI: 10.1021/jp208600n.

  • You Y. Vance G. F. & Zhao H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science 20 13-25. DOI: 10.1016/S0169-1317(00)00043-0.

  • Zachara J. M. Cowan C. E. Schmidt R. L. & Ainsworth C. C. (1988). Chromate adsorption on kaolinite. Clays and Clay Minerals 36(4) 317-326. DOI: 10.1346/CCMN.1988.0360405.

  • Zhang Y.-Y. Jiang H. Zhang Y. & Xie J.-F. (2013). The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chemical Engineering Journal 229 412-419. DOI: 10.1016/j.cej.2013.06.031.

  • Zhang X. Lin S. Chen Z. Megharaj M. & Naidu R. (2010). Kaolinite supported nanoscale zero-valent iron for removal of Pb 2 from aqueous solution: Reactivity characterization and mechanism. Water Research 45(11) 3481-3488. DOI: 10.1016/j.watres.2011.04.010.

  • Zhang X. Lin S. Lu X.Q. & Chen Z. L. (2010). Removal of Pb(II) from water using natural kaolin loaded with synthesized nanoscale zero-valent iron. The Chemical Engineering Journal 163(3) 243-248. DOI: 10.1016/j.cej.2010.07.056.

  • Zhang S. Q. & Hou W. G. (2008). Adsorption behavior of Pb(II) on montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 320(1-3) 92-97. DOI: 10.1016/j.colsurfa.2008.01.038.

  • Zondervan E. & Roffel B. (2007). Evaluation of different cleaning agents used for cleaning ultra filtration membranes fouled by surface water. Journal of Membrane Science 304 40-49. DOI: 10.1016/j.memsci.2007.06.041.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 234 20
PDF Downloads 145 137 4