The Removal of Organic Compounds by Natural and Synthetic Surface-Functionalized Zeolites: A Mini-Review

Open access


The use of zeolites as sorbents has been investigated as a replacement for existing costly methods of removing organic contaminants from water solutions. Zeolites can be modified by inorganic salts, organic surfactants, metals or metal oxides in order to increase their adsorption capacity. The unique ion exchange and adsorption properties of zeolites make them very suitable for application in the removal of organic compounds such as volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenols and other complex petrochemicals. Many different studies have demonstrated their effectiveness in reducing the concentrations of organic contaminants as well as petroleum derivatives in water, which has been summarized in this paper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alkan M. Hopa C. Yilmaz Z. & Guler H. (2005). The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous and Mesoporous Materials 86 176-184. DOI: 10.1016/j.micromeso.2005.07.008.

  • Almeida I. L. Antoniosi Filho N. R. Alves M. I. Carvalho B. G. & Coelho N. M. (2012). Removal of BTEX from aqueous solution using Moringaoleifera seed cake. Environmental Technology 33 1299-1305. DOI: 10.1080/09593330.2011.621451.

  • Aivalioti M. Pothoulaki D. Papoulia P. & Gidarakos E. (2012). Removal of BTEX MTBE and TAME from aqueous solutions by adsorption onto raw and thermally treated lignite. Journal of Hazardous Materials 207- 208 136-146. DOI: 10.1016/j.hazmat.2011.04.084.

  • Apreutesei R. E. Catrinescu C. & Teodosiu C. (2008). Surfactant-modified natural Zeolites for environmental applications in water purification. Environmental Engineering and Management Journal 7 149-161.

  • Bandura L. Woszczuk A. Kołodyńska D. & Franus W. (2017a). Application of Mineral Sorbents for Removal of Petroleum Substances: A Review. Minerals 7 1-25. DOI: 10.3390/min7030037.

  • Bandura L. Kołodyńska D. & Franus W. (2017b). Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Safety and Environmental Protection 109 214-223. DOI: 10.1016.j.psep.2017.03.036.

  • Bandura L. Franus M. Józefaciuk G. & Franus W. (2015). Syntetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147 100-107. DOI: 10.1016/j.fuel.2015.01.067.

  • Bowman R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials 61 43-56. DOI: 10.1016/S1387-1811(03)00354-8.

  • Chao H.-P. Peng C.-L. Lee C.-K. & Han Y.-L. (2011). A study on sorption of organic compounds with different water solubilities on octadecyltrichlorosilane-modified NaY zeolite. Journal of the Taiwan Institute of Chemical Engineers 43 195-200. DOI: 10.1016/j.tice.2011.10.002.

  • Derkowski A. Franus W. Waniak-Nowicka H. & Czímerová A. (2007). Textural properties vs. CEC and EGME retention of Na-X zeolite prepared from fly ash at room temperature. International Journal of Mineral Processing 82(2) 57-68. DOI: 10.1016/j.minpro.2006.10.001.

  • Franus W. & Wdowin M. (2010). Removal of ammonium ions by selected natural and synthetic zeolites. Gospodarka Surowcami Mineralnymi - Mineral Resources Management 26(4) 133-148.

  • Franus W. Wdowin M. & Franus M. (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment 186 5721-5729. DOI: 10.1007/s10661-014-3815-5.

  • Gatta G. D. Lotti P. Nestola F. & Pasqual D. (2012). On the high-pressure behavior of gobbinsite the natural counterpart of the synthetic zeolite Na-P2. Microporous and Mesoporous Materials 163 259-269. DOI: 10.1016/j.micromeso.2012.07.005.

  • Grce M. & Pavelić K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials 79 165-169. DOI: 10.1016/j.micromeso.2004.10.039.

  • Itabashi K. Fukushima T. & Igawa K. (1986). Synthesis and characteristic properties of siliceous mordenite. Zeolites 6 30 -34. DOI: 10.1016/0144-2449(86)90008-4.

  • Kibazohi O. Yun S. I. & Anderson W. A. (2004). Removal of Hexane in Biofilters Packed with Perlite and a Peat-Perlite Mixture. World Journal of Microbiology and Biotechnology 20 337-343. DOI: 10.1023/B:WIBI.0000033054.15023.71.

  • Kuleyin A. (2006). Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials 144 307-315. DOI:10.1016/j.hazmat.2006.10.036.

  • Lee S. M. & Tiwari D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Applied Clay Science 67-68 91-98. DOI: 10.1016/j.clay.2012.02.006.

  • Lemic J. Tomasevic-Canovic M. Adamovic M. Kovacevic D. & Milicevic S. (2007). Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous and Mesoporous Materials 105 317-323. DOI: 10.1016/j.micromeso.2007.04.014.

  • Li Z. & Bowman R. S. (1998). Sorption of Perchloroethylene by Surfactant-Modified Zeolite as Controlled by Surfactant Loading. Environmental Science and Technology 32 2278-2282. DOI: 10.1021/es971118r.

  • Mansouri N. Rikhtegar N. Panahi H. A. Atabi F. & Shahraki B. K. (2013). Porosity characterization and structural properties of natural zeolite - clinoptilolite - as a sorbent. Environment Protection Engineering 39 139-152. DOI: Margeta K. Zabukovec Logarn N. Šiljeg M. & Farkas A. (2013). Natural Zeolites in Water Treatment - How Effective is Their Use. Water Treatment Dr. Walid Elshorbagy (Ed.) InTech DOI: 10.5772/50738.

  • Mathur A. K. Majumder C. B. & Chatterjee S. (2007). Combined removal of BTEX in air stream by using mixture of sugar cane bagasse compost and GAC as biofilter media. Journal of Hazardous Materials 148 64-74. DOI: 10.1016/j.jhazmat.2007.02.030.

  • Meininghaus C. K. W. & Prins R. (2000). Sorption of volatile organic compounds on hydrophobic zeolites. Microporous and Mesoporous Materials 35-36 349-365. DOI: 10.1016/S1387-1811(99)00233-4.

  • Muir B. & Bajda T. (2016a). Organically modified zeolites in petroleum compounds spill cleanup - Production efficiency utilization. Fuel Processing Technology 149 153-162. DOI: 10.1016/j. fuproc.2016.09.017.

  • Muir B. Matusik J. & Bajda T. (2016b). New insights into alkylammonium-functionalized clinoptilolite and Na-P1 zeolite: Structural and textural features. Applied Surface Science 361 242-250. DOI: 10.1016/j.apsusc.2015.11.116.

  • Ranck J. M. Bowman R. S. Weeber J. L. Katz L. E. & Sullivan J. (2005). BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering 131 434-442. DOI: 10.1061/(ASCE)0733-9372(2005)131:3(434).

  • Saini V. K. & Pires J. (2017). Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs. Journal of Environmental Sciences 55 321-330. DOI: 10.1016/j.jes.2016.09.017.

  • Sand L. B. (1968). Synthesis of large-port and small port mordenites. In Molecular Sieves Society of Chemical Industry London 71-77.

  • Szala B. Bajda T. Matusik J. Zięba K. & Kijak B. (2015). BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous and Mesoporous Materials 202 115-123. DOI: 10.1016/j.micromeso.2014.09.033.

  • Qin X. S. Huang G. H. & Li Y. P. (2008). Risk Management of BTEX Contamination in Ground Water - An Integrated Fuzzy Approach. Ground Water 46 5 755-767. DOI: 10.1111/j.1745-6584.2008.00464.x.

  • Querol X. Alastuey A. Fernandez-Turiel J. L. & Lopez-Soler A. (1995). Synthesis of zeolites by alcaline activation of ferro-aluminous fly ash. Fuel 74 1226-1231. DOI: 10.1016/0016-2361(95)00044-6.

  • Xie J. Meng W. Wu D. Zhang Z. & Kong H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials 231-232 57-63. DOI: 10.1016/j.hazmat.2012.06.035.

  • Xie Q. Xie J. Wang Z. Wu D. Zgang Z. & Kong H. (2013). Adsorption of organic pollutants by surfactant modified zeolite as controlled by surfactan chain length. Microporous and Mesoporous Materials 179 144-150. DOI: 10.1016/j.micromeso.2013.05.027.

  • Zhao H. & Vence G. F. (1988). Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research 32 3710-3716. DOI: 10.1016/S0043-1354(98)00172-9.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 344 323 19
PDF Downloads 150 137 7