Iron Metallurgy Slags as a Potential Source of Critical Elements - Nb, Ta and REE

Open access


The recovery of valuable metals from metallurgical slag disposals is a promising option to protect natural resources, limited due to technology development and increased consumption. The Ad-hoc Working Group on Defining Critical Raw Materials within the Raw Materials Supply Group has proposed a list of critical elements which have the greatest economic importance and meet the requirements of sustainable development in Europe. The goal of this study was to examine steelmaking- and blast-furnace slags from metallurgical processes to determine concentrations of elements of the greatest criticality for Poland, e.g. Nb, Ta and REE, and to discuss the viability of their recovery. Slag analyses indicate enrichment of REE relative to UCC, NASC and average chondrite compositions in blast-furnace slags and Nb and Ta in steelmaking slags. To make recovery of these critical elements reasonable and profitable, it is recommended that they be recovered together with other useful raw materials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allegrini E. Maresca A. Olsson M. E. Holtze M. S. Boldrin A. & Astrup T. F. (2014). Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Management 34 1627-1636. DOI: 10.1016/j.wasman.2014.05.003.

  • Binnemans K. Jones P. T. Blanpain B. Van Gerven T. Yang Y. Walton A. & Buchert M. (2013a). Recycling of rare earths: a critical review. Journal of Cleaner Production 51 1-22. DOI: 10.1016/j.jclepro.2012.12.037.

  • Binnemans K. Pontikes Y. Jones P. T. Van Gerven T. & Blanpain B. (2013b). Recovery of rare earths from industrial waste residues: a concise review. In: Malfliet A. Jones P. T. Binnemans K. et al. (Eds.) Proceedings of the 3rd International Slag Valorisation Symposium 19-30 March 2013. KU LEUVEN Leuven Belgium pp. 191-205.

  • Bozkurt S. Moreno L. & Neretnieks I. (1999). Long-term fate of organics in waste deposits and its effect on metal release. Science of the Total Environment 228(2-3) 135-152. DOI: 10.1016/S0048-9697(99)00047-9.

  • Cossu R. Hogland W. & Salerni E. (1996). Landfill mining in Europe and the USA. ISWA Year Book 1996 107-114.

  • Critical raw materials for the EU. (2010). Report of the Ad-hoc Working Group on defining critical raw materials. Raw Materials Supply Group Brussels June 2010.

  • Evans A. M. (1993). Ore geology and industrial minerals (3rd edition). Blackwell (1993).

  • Geiseler J. (1996). Use of steel works slag in Europe. Waste Management 16 59-63. DOI:10.1016/S0956-053X(96)00070-0.

  • Graedel T. E. Allwood J. Birat J. Buchert M. Hagelüken C. Reck B. K. Sibley S. F. & Sonnemann G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology 15(3) 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.

  • Gromet P. L. Dymek R. F. Haskin L. A. & Korote R. L. (1984). The “North American shale composite”: Its compilation major and trace element characteristics. Geochimica et Cosmochimica Acta 48 2469-2482.

  • Gutiérrez-Gutiérrez S. C. Coulon F. Jiang Y. & Wagland S. (2015). Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Management 42 128-136. DOI: 10.1016/j.wasman.2015.04.024.

  • Hogland W. Marques M. & Nimmermark S. (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management 6(2) 119-124. DOI: 10.1007/s10163-003-0110-x.

  • Jain P. Kim H. & Townsend T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management 25 25-35. DOI: 10.1016/j.wasman.2004.08.009.

  • Janke D. Savov L. & Vogel M. E. (2006). Secondary materials in steel production and recycling. A von Gleich et al. (eds). Sustainable Metals Management (Chapter 11) 313-334. Netherlands: Springer.

  • Jarosiński A. (2016). Możliwości pozyskiwania metali ziem rzadkich w Polsce. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 92 75-88. [in Polish].

  • Jonczy I. (2014). Mineralogical and chemical study of metallurgical slags from the dump and current production in Gliwice-Łabędy as well as the dump influence on soil. Gliwice 2014. [in Polish].

  • Jonczy I. & Lata L. (2013). Charakterystyka składu chemicznego żużli konwertorowych i wielkopiecowych. Górnictwo i Geologia 8(4) 51-61. [in Polish].

  • Juenger M. C. G. Monteiro P. J. M. & Gartner E. M. (2006). In situ imaging of ground granulated blast furnace slag hydratation. Journal of Material Science 41 7074-7081. DOI: 10.1007/s10853-006-0941-7.

  • Kasina M. Kowalski P. R. & Michalik M. (2014). Mineral carbonation of metallurgical slags. Mineralogia 45(1-2) 27-45. DOI: 10.1515/mipo-2015-0002.

  • Kawasaki A. Kimura R. & Arai S. (1998). Rare earth elements and other trace elements in wastewater treatment sludges. Soil Science and Plant Nutrition 44(3) 433-441. DOI: 10.1080/00380768.1998.10414465.

  • Kelmendi S. & Azemi F. (2011). Comparative economic elements of mineral resources in the context of international management. Journal of economic and politics of Transition. Transition - ISSN 1512-5785.

  • Kulczycka J. Kowalski Z. Smol M. & Wirth H. (2016). Evaluation of the recovery of Rare Earth Elements (REE) from phosphogypsum waste ̶ case study of the WIZ_OW Chemical Plant (Poland). Journal of Cleaner Production 113 345-354. DOI: 10.1016/j.jclepro.2015.11.039.

  • Lie A. & Østergaard C. (2014). The Fen Rare Earth Element deposit Ulefoss South Norway. Executive summary regarding deposit significance Compiled and prepared by 21st North Svendborg 6th of June 2014 in commission for REE Minerals Norway.

  • Liu Y. & Naidu R. (2014). Hidden values in bauxite residue (red mud): Recovery of metals. Waste Management 34 2662-2673. DOI: 10.1016/j.wasman.2014.09.003.

  • Małoszowski M. (2009). Mineral and chemical composition of metallurgical slags from Kuźnice and their effect on environment [in Polish]. Master Thesis Jagiellonian University.

  • Massari M. & Ruberti M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy 38 36-43. DOI: 10.1016/j.resourpol.2012.07.001.

  • Meyer L. & Bras B. (2011). Rare earth metal recycling 2011. IEEE International Symposium on Sustainable Systems and Technology ISSST 2011 16 May 2011 through 18 May 2011 Chicago IL. Morf L. S. Gloor R.

  • Haag O. Haupt M. Skutan S. Lorenzo F. D. & Böni D. (2013). Precious metals and rare earth elements in municipal solid waste - Sources and fate in a Swiss incineration plant. Waste Management 33(3) 634-644. DOI: 10.1016/j.wasman.2012.09.010.

  • Motz H. & Geiseler J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management 21 285-293. DOI: 10.1016/S0956-053X(00)00102-1.

  • Mueller S.R. Wäger P. A. Widmer R. & Williams I. D. (2015). A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Waste Management 45 226-234. DOI: 10.1016/j.wasman.2015.03.038.

  • Quaghebeur M. Laenen B. Nielsen P. Spooren J. & Geysen D. (2010). Valorisation of materials within enhanced landfill mining: What is feasible? In the context of the transition to Sustainable Materials Management (SMM) and Enhanced Waste Management (EWM) Belgium 4-6 October 2010.

  • Report on critical raw materials for the EU. (2014). Report of the Ad-hoc Working Group on defining critical raw materials May 2014.

  • Statistical yearbook of the Republic of Poland 2014. (2014). Central Statistical Office. ISSN 1506-0632.

  • Schmidt R. A. Smith R. H. Lasch J. E. Mosen A. W. Olehy D. A. & Vasilevshis J. (1963). Abundances of Fourteen Rare-Earth Elements Scandium and Yttrium in Meteoritic and Terrigenous Matter. Geochimica et Cosmochimica Acta 27(6) 577-622. DOI: 10.1016/0016-7037(63)90014-0.

  • Schulze R. & Buchert M. (2016). Estimates of global REE recycling potentials from NdFeB magnet material. Resources Conservation and Recycling 113 12-27. DOI: 10.1016/j.resconrec.2016.05.004.

  • Silberglitt R. Bartis J. T. Chow B. G. An D. L. & Brady K. (2013). Critical Materials. Present Danger to U.S. Manufacturing. Library of Congress Cataloging-in-Publication. RAND Corporation. ISBN: 978-0-8330-7883-4.

  • Smakowski T. J. (2011). Surowce mineralne - krytyczne czy deficytowe dla gospodarki UE i Polski. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energi Polskiej Akademii Nauk 81 59-68. [in Polish].

  • Sommer P. Rotter V.S. & Ueberschaar M. (2015). Battery related cobalt and REE flows in WEEE treatment. Waste Management 45 298-305. DOI: 10.1016/j.wasman.2015.05.009.

  • Taylor S. R. & McLennan S. M. (1985). The Continental Crust: Its Composition and Evolution. Oxford UK: Blackwell Scientific Publications.

  • Van der Zee D. J. Achterkamp M. C. & de Visser B. J. (2004). Assessing the market opportunities of landfill mining. Waste Management 24 795-804. DOI: 10.1016/j.wasman.2004.05.004.

  • Zhang F. Yamasaki S. & Kimura K. (2001). Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environment International 27(5) 393-398. DOI: 10.1016/S0160-4120(01)00097-6.

  • Zimmermann T. & Gößling-Reisemann S. (2013). Critical materials and dissipative losses: A screening study. Science of the Total Environment 461-462 774-780. DOI: 10.1016/j.scitotenv.2013.05.040.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 144 23
PDF Downloads 203 141 9