Exceptional Tl-bearing manganese oxides from Zalas, Krakow area, southern Poland

Open access


In the Permian rhyodacite quarry at Zalas near Krakow, southern Poland, thallium-bearing Mn oxides occur in a small fault zone cutting Middle Jurassic sandy limestone poorly encrusted by an oxidized polymetallic mineralization. The encrustation comprises sulphides (pyrite, chalcopyrite, chalcocite, covellite, galena, marcasite), native bismuth, hematite, goethite, cuprite, mottramite, iodargyrite, unrecognized Cu sulphates and Bi oxychlorides as supergene minerals, barite and rare tiny grains of gold. It is most likely connected with rejuvenation of Early-Paleozoic faults during the Alpine orogeny on the Oligocene–Miocene boundary. Rare Tlbearing Mn oxides occur in an outside zone of the encrustations, filling small fractures and voids in limestone forming the fault breccia. Tl contents, reaching 20.82wt% as Tl2O, exceed by more than two orders of magnitude those reported in similar minerals before, making the oxides unique on a world scale. The Tl-bearing Mn oxides from Zalas reflect intensive weathering of an older Tl-bearing sulphide mineralization in an arid climate, involving saline fluids delivered to the groundwater system as the nappe structure of the Carpathians was developing during the Sava tectonic phase Oligocene/Miocene boundary.

7. References

  • Balić-Žunić, T., Moëlo, Y., Lončar, Ž., & Micheelsen, H. (1994). Dorrallcharite, Tl0,8K0,2Fe3(SO4)2(OH)6, a new mineral of the jarosite–alunite family. European Journal of Mineralogy, 6, 255-264. DOI: 10.1127/ejm/6/2/0255.

  • Bodeï, S., Manceau, A., Geoffroy, N., Baronnet, A., & Buatier, M. (2007). Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochimica et Cosmochimica Acta, 71, 5698-5716. DOI:10.1016/j.gca.2007.07.020.

  • Bojakowska, I., & Paulo, A. (2013). Thallium in mineral resources extracted in Poland. Proceedings of the 16th International Conference on Heavy Metals in the Environment, 23-27 September 2012, Rome, Italy. E3S Web of Conferences, 1, 14006. DOI: 10.1051/e3sconf/20130114006.

  • Brookins, D.G. (1988). Eh-pH Diagrams for Geochemistry. Springer-Verlag Berlin.

  • Buła, Z. (2002). Geological atlas of the Palaeozoic without the Permian in the border zone of the Upper Silesian and Małopolska Blocks. Explanatory text. Państwowy Instytut Geologiczny. Warszawa.

  • Critteden, M.S., Cuttitta, F., Rose, H.D., & Fleischer, M. (1962). Studies on manganese oxide minerals VI. Thallium in some manganese oxides. American Mineralogist, 47, 1461-1467.

  • Czerny, J. (1992). Hydrothermal mineralization phenomena in Karniowice Travertine near Cracow. Mineralogia Polonica, 23, 3–13.

  • Daiyan, Ch., Guanxin, W., Zhenxi, Z., & Yuming, Ch. (2003). Lanmuchangite, a new thallium (hydrous) sulphate from Lanmuchang, Guizhou Province, China. Chinese Journal of Geochemistry, 22(2), 185-192.

  • Gołębiowska, B., Pieczka, A., Rzepa, G., Matyszkiewicz, J., & Krajewski, M. (2010). Iodargyrite from Zalas (Cracow area, Poland) as an indicator of Oligocene–Miocene aridity in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 130-137. DOI:10.1016/j.palaeo.2010.06.022

  • Gołębiowska, B., Rzepa, G., & Kraczkowska, I. (2007). Fe-Mn on the Middle-Upper Jurassic boundary in Zalas near Cracow (S Poland). Mineralia Slovakia, Geovestnik, 2, 8.

  • Górecka, E. (1993). Genetic model of Zn-Pb deposit in the Olkusz ore district (S Poland). Archiwum Mineralogiczne, 49, 23-80.

  • Górecka, E., & Nowakowski, A. (1979). Ore deposits associated with acid intrusives and related rocks in the Zawiercie region. Prace Instytutu Geologicznego, 95, 97-108.

  • Gradziński, R., Gradziński, M., & Michalik, S. (1994). Natura i kultura w krajobrazie Jury. Przyroda. Kraków: Wyd. Zarząd Zespołu Jurajskich Parków Krajobrazowych w Krakowie.

  • Grangeon, S., Lanson, B., Lanson, M., & Manceau, A. (2008). Crystal structure of Ni-sorbed synthetic vernadite: A powder X-ray diffraction study. Mineralogical Magazine, 72, 1197-1209. DOI: 10.1180/minmag.2008.072.6.1279.

  • Grangeon, S., Manceau, A., Guilhermet, J., Gaillot, A.-C., Lanson, M., & Lanson, B. (2012). Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochimica et Cosmochimica Acta, 85, 302-313. DOI:10.1016/j.gca.2012.02.019.

  • Gruszecka, A.M., & Wdowin, M. (2013). Characteristics and distribution of analyzed metals in soil profiles in the vicinity of postflotation waste site in the Bukowno region, Poland. Environmental Monitoring and Assessment, 185, 8157-8168. DOI 10.1007/s10661-013-3164-9.

  • Harańczyk, C. (1958). Thallium jordanite. Bulletin de l’Academie Polonaise des Sciences, Serie des sciences chimiques, geologiques et geographiques, 6, 201-208.

  • Harańczyk, C. (1965). Geochemistry of the ore minerals from Silesia-Cracow zinc and lead deposits. Prace Geologiczne, 30, 5-111. [in Polish with English summary].

  • Harańczyk, C. (1978). Kraków Paleozoic telluric province (in Polish with English summary). Przegląd Geologiczny, 26, 337-343 [In Polish with English summary].

  • Haynes, B.W., Law, S.S., Barron, D.C., Kramer, G.W., Maeda, R., & Magyar, M.J. (1985). Pacific manganese nodules: characterization and processing. Bulletin of the United States Department of the Interior, Bureau of Mines, 679.

  • Hein, J.R., Conrad, T.A., Frank, M., Christl, M., & Sager, W.W. (2012). Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific. Geochemistry, Geophysics, Geosystems, 13(10), 1-23. DOI: 10.1029/2012GC004286

  • Hewett, D.F. (1968). Silver in veins of hypogene manganese oxides. Geological Survey Circular, 553, United States Department of the Interior. Washington.

  • Jezequel, P., Wille, G., Bény, C., Delorme, F., Jean-Prost, V., Cottier, R., Breton, J., Duré, F., & Despriee, J. (2011). Characterization and origin of black and red Magdalenian pigments from Grottes de la Garenne (Valléemoyenne de la Creuse-France): a mineralogical and geochemical approach of the study of prehistorical paintings. Journal of Archaeological Science, 38(6), 1165-1172. DOI: 10.1016/j.jas.2010.12.014.

  • John Peter, A.L., & Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment International, 31(1), 493-501. DOI: 10.1016/j.envint.2004.09.003.

  • Jović, V. (1993). Thallium in rocks, soils and plants: past progress and future needs. Neues Jahrbuch für Mineralogie, Abhandlungen, 166, 43-52.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4thed.). Boca Raton: CRC Press.

  • Kämpf, N., Scheinost A.C., & Schultze, D.G. (2000). Oxide minerals. In: Sumner ME (ed.) Handbook of soil science, CRC Press.

  • Karlsson, U., Karlsson, S., & Duker, A. (2006). The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. Journal of Environmental Monitoring, 8(6), 634-640. DOI: 10.1039/B516445A.

  • Karpova, K.N., Kon'kova, E.A., Larkin, E.D., & Savel'ev, V.F. (1958). Avicennite, a new mineral (in Russian). Doklady Akademii Nauk Uzbekistan SSR, 2, 23-26.

  • Koschinsky, A., & Hein, J.R. (2003). Uptake of elements from seawater by ferromanganese crusts: solid phase associations and seawater speciation. Marine Geology, 198, 331-351. DOI: 10.1016/S0025-3227(03)00122-1.

  • Kucha, H., & Viaene, W. (1993). Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits in Belgium and Poland. Mineralium Deposita, 28, 13-21.

  • Lide, D., R. (1996). Handbook of chemistry and physics, 77th. ed.

  • Lin, T.S., & Nriagu, J. (1999). Thallium speciation in the Great Lakes. Environmental Science and Technology, 33(19), 3394-3397. DOI: 10.1021/es981096o.

  • Lis, J., Pasieczna, A., Karbowska, B., Zembrzuski, W., & Lukaszewski, Z. (2003). Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environmental Science and Technology, 37(20), 4569-4572. DOI: 10.1021/es0346936.

  • Manceau, A., Kersten, M., Marcus, M.A., Geoffroy, N., & Granina, L. (2007). Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal. Geochimica et Cosmochimica Acta, 71(8), 1967-1981. DOI:10.1016/j.gca.2007.02.007.

  • Manceau, A., Lanson, B., & Drits, V.A. (2002). Structure of heavy metal sorbed birnessite. Part III: Results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta, 66(15), 2639-2663. DOI:10.1016/S0016-7037(02)00869-4.

  • Manceau, A., Lanson, M., & Takahashi, Y. (2014). Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. American Mineralogist, 99(10), 2068-2083. DOI: 10.2138/am-2014-4742.

  • Marciniak, H., Diduszko, R., & Kozak, M. (2006). XRAYAN. Program do rentgenowskiej analizy fazowej, wersja 4.0.1. Koma, Warszawa.

  • Matyszkiewicz, J. (1997). Microfacies, sedimentation and some aspects of diagenesis of Upper Jurassic sediments from the elevated part of the Northern peri-Tethyan Shelf: a comparative study on the Lochen area (Schwäbische Alb) and the Cracow area (Cracow–Wieluń Upland, Polen). Berliner Geowissenschaftliche Abhandlungen, 21. Berlin: Selbstverlag Fachbereich Geowissenschaften, 1-111.

  • Matyszkiewicz, J., Krajewski, M., & Żaba, J. (2006). Structural control on the distribution of Upper Jurassic carbonate buildups in the Kraków–Wieluń Upland (South Poland). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 3,182-192.

  • Mayer, W., & Sass-Gustkiewicz, M. (1998). Geochemical characterization of sulphide minerals from the Olkusz lead-zinc ore cluster, Upper Silesia (Poland), based on laser ablation data. Mineralogia Polonica, 29, 87-105.

  • Mikulski, S.Z., Oszczepalski, S., & Markowiak, M. (2012). The occurrence and prospective resources of molybdenum and tungsten ores in Poland. Biuletyn Państwowego Instytutu Geologicznego, 448, 297–314. [In Polish with English summary].

  • Murray, W. (1975). The interactions of metal ions at the manganese dioxide-solution interface. Geochimica et Cosmochiica Acta 39, 505-51.

  • Muszyński, M. (1991). Mineral veins in rocks of the sub-Devonian basement of the Cracow-Silesian Monocline. Zeszyty Naukowe AGH, 52, 7-129. [In Polish with English summary].

  • Nawrocki, J., Polechońska, O., Lewandowska, A., & Werner, T. (2005). On the palaeomagnetic age of the Zalas laccolith (southern Poland). Acta Geologica Polonica, 55, 229-236.

  • Oszczepalski, S., Markowiak, M., Mikulski, S.Z., Lasoń, K., Buła, Z., & Habryn, R. (2010). Porphyry Mo-Cu-W mineralization within Precambrian-Paleozoic rocks – prospectivity analysis of the border zone of the Upper Silesia and Małopolska Block. Biuletyn Państwowego Instytutu Geologicznego, 439, 339-354. [In Polish with English summary].

  • Peacock, C.L. (2009). Physicochemical controls on the crystal-chemistry of Ni in birnessite: Genetic implications for ferromanganese precipitates. Geochimica et Cosmochimica Acta, 73(12), 3568-3578. DOI: 10.1016/j.gca.2009.03.020.

  • Peacock, C.L., & Moon, E.M. (2012). Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochimica et Cosmochimica Acta, 84, 297-313. DOI: 10.1016/j.gca.2012.01.036.

  • Rajchel, B. (2008). Geochemia Tl, As, Cd, Pb w rudach oraz odpadach hutniczych Zn-Pb Górnego Śląska. Unpublished Ph.D. thesis. AGH University of Science and Technology, Kraków. [In Polish].

  • Rehkämper, M., Frank, M., Hein, J.R., & Halliday, A. (2004). Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth and Planetary Science Letters, 219, 77-91. DOI: 10.1016/S0012-821X(03)00703-9.

  • Sawłowicz, Z. (1981). Forma występowania domieszek Pb, As, Tl i Zn w pirycie ze złóż śląsko–krakowskich. Rudy i Metale Nieżelazne, 26, 355–362. [In Polish]

  • Schmiermund, R. (2008). Thallium – a potential environmental and occupational “driver” for mining? E2Geochemistry, Inc. Newsletter, Economic & Environmental Geochemistry, Inc. (E2Geochemistry.com), 1, 1-10.

  • Sutley, S., Sass-Gustkiewicz, M., Mayer, W., & Leach, D. (1999). Mineralogy and chemistry of oxidized ores from the Upper Silesia Mississippi Valley-type zinc-lead deposits, Poland. USGS Open-File Report, 99-394, 1–44.

  • Twining, B., Twiss, M., & Fisher, N.S, (2003). Oxidation of thallium by freshwater plankton communities. Environmental Science and Technology, 37(12), 2720-2726. DOI: 10.1021/es026145i.

  • Vaněk, A., Chrastný, V., Komárek, M., Penížek, V., Teper, L., Cabala, J., & Drábek, O. (2013). Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration, 124, 176-182. DOI:10.1016/j.gexplo.2012.09.002.

  • Voegelin, A, Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A.C., Mangold, S., Steininger, R., & Göttlicher, J. (2015). Thallium Speciation and Extractability in a Thallium- and Arsenic-Rich Soil Developed from Mineralized Carbonate Rock. Environmental Science and Technology, 49(9), 5390-5398. DOI: 10.1021/acs.est.5b00629.

  • Voskresenskaya, N.T., & Soboleva, L.T. (1961). Once more on thallium in manganese minerals. Geokhimiya, 3, 276-278. [In Russian with English summary].

  • Wan, S.L., Ma, M.H., Lv, L., Qian, L.P., Xu, S.Y., Xue, Y., Ma, Z.Z (2014). Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chemical Engineering Journal, 239, 200-206. DOI:10.1016/j.cej.2013.11.010.

  • Wedepohl, K.K. (1978). Handbook of Geochemistry, 2(5), Berlin, Heidelberg, New York: Springer-Verlag.

  • Zhou, T.F., Fan, Y., Yuan, F., Wu, M.A., Hou, M.J., Voicu, G., Hu, Q.H., Zhang, Q.M., &Yue, S.C. (2005). A preliminary geological and geochemical study of the Xiangquan thallium deposit, eastern China: the world’s first thallium-only mine. Mineralogy and Petrology, 85, 243-251. DOI 10.1007/s00710-005-0088-2.

  • Żaba, J. (1999). The structural evolution of Lower Palaeozoic succession in the Upper Silesia Block and Małopolska Block border zone, southern Poland. Prace Państwowego Instytutu Geologicznego, 166, 1–162. [In Polish with English summary].


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 16
PDF Downloads 3 3 3