Distribution of phenols related to self-heating and water washing on coal-waste dumps and in coaly material from the Bierawka river (Poland)

Open access


Several types of coal waste (freshly-dumped waste, self-heated waste and waste eroded by rain water), river sediments and river water were sampled. The aim was to identify the types of phenols present on the dumps together with their relative abundances. Gas chromatography-mass spectrometry (GC-MS) analyses of a large number of samples (234) statistically underpin the phenol distributions in the sample sets. The largest average relative contents (1.17-13.3%) of phenols occur in the self-heated samples. In these, relatively high amounts of phenol, C1- and C2-phenols reflect the thermal destruction of vitrinite. In fresh coal waste, C2- and C3-phenols that originated from the bacterial/fungal degradation and oxidation of vitrinite particles are the most common (0.6 rel.%). Water-washed coal waste and water samples contain lower quantities of phenols. In the river sediments, the phenols present are the result of bacterial- or fungal decay of coaly organic matter or are of industrial origin.

6. References

  • Clayton, G. D., & Clayton, F. E. (1994). Patty’s Industrial Hygiene and Toxicology (4 ed.). John Wiley & Sons Inc. New York, Vol. 2A, 132 p.

  • Damsté, J. S. S., & de Leeuw, J. W. (1995). Comments on “Biomarkers or not biomarkers. A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols” from M. Li, S. R. Larter, P. Taylor, D. M. Jones, B. Bowler and M. Bjørey. Organic Geochemistry, 23, 1085-1087.

  • Fabiańska, M. J., Ćmiel, S. R., & Misz-Kennan, M. (2013). Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seam of the Zaleskie Beds (Poland). International Journal of Coal Geology, 107, 96-111. DOI:10.1016/j.coal.2012.08.003.

  • Fabiańska, M.J., & Kurkiewicz, S. (2013). Biomarkers, aromatic hydrocarbons and polar compounds in the Neogene lignites and gangue sediments of the Konin and Turoszów Brown Coal Basins (Poland). International Journal of Coal Geology, 107, 24-44. DOI:10.1016/j.coal.2012.11.008.

  • Faksness, L. G., & Brandvik, P. J. (2008). Distribution of water soluble components from oil encapsulated in Arctic sea ice: Summary of three field seasons. Cold Regions Science and Technology, 54(2), 106-114. DOI:10.1016/j.coldregions.2008.03.006.

  • Faure, P., Elie, M., Mansuy, L., Michels, R., Landais, P., & Babut, M. (2004). Molecular studies of insoluble organic matter in river sediments from Alsace-Lorraine (France). Organic Geochemistry, 35(2), 109-122. DOI:10.1016/j.orggeochem.2003.10.008.

  • Faure, P., Landais, P., Elie, M., Kruge, M., Langlois, E., & Ruau, O. (1999). Application of organic geochemistry techniques to environmental problems. In J., Berthelin, P-M., Huang, J.-M., Bollag, F. Andreux, (Eds.), Effects of Mineral-Organic-Microorganism Interactions on Soil and Fresh Water Environments (pp 119-131). Plenum Publishing Company, London.

  • Fleeger, J. W., Carman, K. R., & Nisbet, R. M. (2003). Indirect effect of contaminants in aquatic ecosystems. Science of the Total Environment, 317, 207-233. DOI:10.1016/S0048-9697(03)00141-4.

  • Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B., & Fenner, N. (2001). Export of organic carbon from peat soils. Nature, 412, 785. DOI:10.1038/35090628.

  • Gad, N. S., & Saad., A. S. (2008). Effect of Environmental Pollution by Phenol on Some Physiological Parameters of Oreochromis niloticus. Global Veterinaria, 2(6), 312-319.

  • Garcette-Lepecq, A., Derenne, S., Largeau, C., Bouloubassi, I., & Saliot, A. (2000). Origin and formation pathways of kerogen-like organic matter in recent sediments of the Danube delta (northwestern Black Sea). Organic Geochemistry, 31, 1663-1683. DOI:10.1016/S0146-6380(00)00100-5.

  • Haider, R., Ghauri, M. A., SanFilipo, J. R., Jones, E. J., Orem, W. H., Tatu, C. A., Akhtar, K., & Akhtar, N. (2013). Fungal degradation of coal as a pretreatment for methane production. Fuel, 104, 717-725. DOI:10.1016/j.fuel.2012.05.015.

  • Hatcher, P. G., & Clifford, D.J. (1997). The organic geochemistry of coal: from plant materials to coal. Organic Geochemistry, 27, 251-274. DOI:10.1016/S0146-6380(97)00051-X.

  • Hatcher, P. G., Faulon, J. L., Wenzel, K. A., & Cody, G. D. (1992). A structural model for ligninderived vitrinite from high-volatile bituminous coal (coalified wood). Energy & Fuels, 6, 813-820.

  • Hatcher, P. G., Lerch, H. E. I., & Verheyen, T. V. (1989). Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal. International Journal of Coal Geology, 13, 65-97.

  • Hatcher, P. G., Lerche, H. E. I., Kotra, R. K., & Verheyen, T. V. (1988). Pyrolysis g.c-m.s. of a series of degraded woods and coalified logs that increase in rank from peat to subbituminous coal. Fuel, 67, 1069-1075.

  • Hättenschwiler, S., & Vitousek, P. M. (2001). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution, 15(6), 238-243. DOI:10.1016/S0169-5347(00)01861-9.

  • Hedges, J. I., & Ertel, J. R. (1982). Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analytical Chemistry, 54, 174-178.

  • Iglesias, M. J., del Rio, J. C., Laggoun-Défarge, F., Cuesta, M. J., & Suárez-Ruiz, I. (2002). Control of the chemical structure of perhydrous coals; FTIR and Py-GC/MS investigation. Journal of Analytical and Applied Pyrolysis, 62, 1-34. DOI: 0.1016/S0165-2370(00)00209-6.

  • Iglesias, M. J., Jimeánez, A., del Rõáo, J. C., & Suárez-Ruiz, I. (2000). Molecular characterisation of vitrinite in relation to natural hydrogen enrichment and depositional environment. Organic Geochemistry, 31, 1285-1299. DOI:10.1016/S0146-6380(00)00086-3.

  • Ioppolo-Armanios, M., Alexander, R., & Kagi, R. (1995). Geosynthesis of organic compounds: I. Alkylphenols. Geochimica et Cosmochimica Acta, 59, 3017-3027. DOI:10.1016/0016-7037(95)80001-8.

  • Killops, S., & Killops, V. (2005). Introduction to Organic Geochemistry (Second Edition) Blackwell publishing, pp 45-300.

  • Klimek, K., Górska, W., & Woskowicz-Slezak, B. (2013). Bierawka – Odra confluence: A record of sandy-bed river transformation under human impact. Abstract Book and Field Guide (ed.) Kalicki, T., Krupa, J., (conference material) Geoarcheology of river valleys 13-15 May, Kielce-Suchedniów (Poland).

  • Kotarba, M. J., Clayton, J. L., Rice, D. D., & Wagner, M. (2002). Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales. Chemical Geology, 184, 11-35. DOI:10.1016/S0009-2541(01)00350-3.

  • Martin, F., Saiz-Jimenez, C., & Gonzalez-Vila, F. J. (1979). Pyrolysis-gas chromatography-mass spectrometry of lignin. Holzforschung, 33, 210-212.

  • McBrain, A., Senire, E., Patersona, A., Duplessis, C. H., & Watson-Craiene, A. (1996). Bioremediation of soil contaminated with 4-chloro-2-methylphenoxyacetic acid (MC PA): essential laboratory studies. South African Journal of Science, 92, 426-430.

  • Michałowicz, J., & Duda, W. (2007). Phenols – Sources and Toxicity. Polish Journal of Environmental Studies, 16, 347-362.

  • Misz-Kennan, M. (2010). Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland. Mineralogia, 3-4, 105-236. DOI: 10.2478/v10002-010-0001-4.

  • Misz-Kennan, M., Ciesielczuk, J., & Tabor, A. (2013). Coal-Waste Dump Fires of Poland. (Chapter 15) In: G.B., Stracher, A., Prakash, & E.V. Sokol (Eds.), Coal and Peat Fires: A Global Perspective Volume 2 (pp 233-311). Photographs and Multimedia Tours. (ISBN: 0978-0-444-59412-9).

  • Misz-Kennan, M., & Fabiańska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81, 343-358. DOI:10.1016/j.coal.2009.08.009.

  • Misz-Kennan, M., & Fabiańska, M. J. (2011). Application of organic petrology and geochemistry to coal waste studies. International Journal of Coal Geology, 88, 1-23. DOI:10.1016/j.coal.2011.07.001.

  • Mukherjee, D., Bhattacharya, S., Kumar, V., & Moitra, J. (1990). Biological significance of. phenol accumulation in different organs of a murrel, Chamnna punctatus and the common carp Cyprinus carpio. Biomedical and Environmental Science, 3, 337-342.

  • Nádudvari, Á., & Fabiańska, M. J. (2015). Coal-related sources of organic contamination in sediments and water samples of Bierawka River (Poland). International Journal of Coal Geology, 152, 94-109. DOI: 10.1016/j.coal.2015.11.006.

  • Nádudvari, Á. (2014). Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland) — A case study. International Journal of Coal Geology, 128-129, 47-54. DOI:10.1016/j.coal.2014.04.005.

  • Nádudvari, Á., & Fabiańska, M. J. (2016). Use of geochemical analysis and vitrinite reflectance to assess different self-heating processes in coal-waste dumps (Upper Silesia, Poland). Fuel, 181, 102–119. DOI:10.1016/j.fuel.2016.04.129.

  • Obst, J. R. (1983). Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. Journal of Wood Chemistry and Technology, 3, 377-397.

  • Orem, W. H., Voytek, M. A., Jones, E. J., Lerch, H. E., Bates, A. L., Corum, M. D., Warwick, P. D., & Clark, A. C. (2010). Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions. Organic Geochemistry, 41, 997-1000. DOI:10.1016/j.orggeochem.2010.03.005.

  • Parafiniuk, J., & Kruszewski, Ł. (2010). Minerals of the ammonioalunite_ammoniojarosite series formed on a burning coal dump at Czerwionka, Upper Silesian Coal Basin, Poland. Mineralogical Magazine, 74(4), 731-745. DOI: 10.1180/minmag.2010.074.4.731.

  • Pelka-Gosciniak, J., Rahmonov, O., & Szczypek, T. (2008). Water reservoirs in subsidence depressions in landscape of the Silesian Upland (Southern Poland), Environmental Engineering, May 22-23, The 7th International Conference on Environmental engineering in Lithuania.

  • Philp, R. P. (1985). Fossil Fuel Biomarkers. Application and Spectra. Elsevier Science Pub. Co., Inc., New York, NY. 294 pp.

  • Ré-Poppi, N., & Santiago-Silva, M. R. (2002). Identification of Polycyclic Aromatic Hydrocarbons and Methoxylated Phenols in Wood Smoke Emitted During Production of Charcoal. Chromatographia, 55, 475-481.

  • Rovira, P., & Vallejo, V. R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107(1-2), 109-141. DOI:10.1016/S0016-7061(01)00143-4.

  • SAC (Screening Assessment for the Challenge) (2010). Available fromhttps://www.ec.gc.ca/eseees/default.asp?lang=En&n=6E4A53B5-1.

  • Saiz-Jimenez, C., & de Leeuw, J. W. (1985). Lignin pyrolysis products: Their structures and their significance as biomarkers. Organic Geochemistry, 10, 869-876.

  • Simoneit, B. R. T. (2002). Biomass burning – a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162. DOI:10.1016/S0883-2927(01)00061-0.

  • Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., & Cass, G. R. (1993). Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environmental Science and Technology, 27, 2533-2541. DOI: 10.1021/es00048a034.

  • Simoneit, B. R. T., Bi, X., Oros, D. R., Medeiros, P. M., Sheng, G., & Fu, J. (2007). Phenols and Hydroxy-PAHs (Arylphenols) as Tracers for Coal Smoke Particulate Matter: Source Tests and Ambient Aerosol Assessments. Environmental Science and Technology, 41, 7294-7302. DOI: 10.1021/es071072u.

  • Skręt, U., Fabiańska, M. J., & Misz-Kennan, M. (2010). Simulated water-washing of organic compounds from selfheated coal wastes of the Rymer Cones Dump (Upper Silesia Coal Region, Poland). Organic Geochemistry 41(9), 1009-1012. DOI:10.1016/j.orggeochem.2010.04.010.

  • Sracek, O., Gzyl, G., Frolik, A., Kubica, J., Bzowski, Z., Gwoździewicz, M., & Kura, K. (2010). Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environmental Monitoring Assessment, 165, 233-254. DOI: 10.1007/s10661-009-0941-6.

  • Swann, P. D., & Evans, D. G. (1979). Low-temperature oxidation of brown coal. 3. Reaction with molecular oxygen at temperatures close to ambient. Fuel, 58, 276-80. doi:10.1016/0016-2361(79)90136-4.

  • Swarts, M., Verhagen, F., Field, J., & Wijnberg, J. (1998). Trichlorinated phenols from Hypholoma elongatum. Phytochemistry, 49, 203-206. DOI:10.1016/S0031-9422(97)01067-4.

  • Tabor, A. (2002) Monitoring of coal waste dumps, re-cultivated dumps and other collection sites of Carboniferous waste rocks in the light of many years experience. Proceedings - VII Conference “Long term proecological undertakings in the Rybnik Coal Area”, October 2002 (pp. 131–141). Rybnik, [in Polish], In: Misz-Kennan, M., (2010). Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland. Mineralogia, 41(3–4),105–236.

  • The Wiley/NBS Registry of Mass Spectral Data (2000) Wiley, New York. United States Environmental Protection Agency (EPA) (2000) Phenol, from http://www.epa.gov/ttnatw01/hlthef/phenol.html.

  • Wojciechowski, T. (2006). The Dynamics of Mining Subsidence in Knurow Area in Poland Derived from SAR Interferometry and Topographic Data, European Space Agency – Publications – ESA Sp, 610; P35 Fringe-Workshop, Fringe.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2016: 0.36

SCImago Journal Rank (SJR) 2016: 0.127
Source Normalized Impact per Paper (SNIP) 2016: 0.197


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 2 2 2