Mineral carbonation of metallurgical slags


Due to increasing emissions of greenhouse gases into the atmosphere number of methods are being proposed to mitigate the risk of climate change. One of them is mineral carbonation. Blast furnace and steel making slags are co-products of metallurgical processes composed of minerals which represent appropriate source of cations required for mineral carbonation. Experimental studies were performed to determine the potential use of slags in this process. Obtained results indicate that steel making slag can be a useful material in CO2 capture procedures. Slag components dissolved in water are bonded as stable carbonates in the reaction with CO2 from ambient air. In case of blast furnace slag, the reaction is very slow and minerals are resistant to chemical changes. More time is needed for minerals dissolution and release of cations essential for carbonate crystallisation and thus makes blast furnace slags less favourable in comparison with steel making slag.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bodor, M., Santos, R. M., van Gerven, T., & Vlad, M. (2013). Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation - a review. Central European Journal of Engineering, 3, 566-584. DOI: 10.2478/s13531-013-0115-8.

  • Chaurand, P., Rose, J., Domas, J., & Bottero, J-Y. (2006): Speciation of Cr and V within BOF steel slag reused in road construction. Journal of Geochemical Exploration, 88, 10-14.

  • Diener, S., Andreas, L., Herrmann, I., Ecke, H., & Lagerkvist, A. (2010). Accelerated carbonation of steel slags in a landfill cover construction. Waste Management, 30, 132-139.

  • Drissen, P. (2007). Binding of trace elements in steel slags. In: Proceedings of the Fifth European Slag Conference (Euroslag). 19-21 September 2007 (pp. 187-198). Luxembourg.

  • Engström, F., Adolfsson, D., Samuelsson, C., Sandström, Å., & Björkman, B. (2013). A study of the solubility of pure slag minerals. Minerals Engineering, 41, 46-52. DOI: 10.1016/j.mineng.2012.10.004.

  • Fan, L. S. & Park, A. (2004). CO2 mineral sequestration in a high pressure, high temperature, 3-phase fluidized bed reactor. Canadian Journal of Chemical Engineering, 81(3-4), 885-890.

  • Férnandez Bertos, M., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, B112, 193-205.

  • Fix, W., Heymann, H., & Heinke, R. (1969). Subsolidus relations in the system 2CaO•SiO2-3CaO•P2O5. Journal of the American Ceramic Society - Discussion and Notes, 52, 346-347.

  • Goff, F., Guthrie, G., Lipin, B., Fite, M., Chipera, S., Counce, D., Kluk, E., & Ziock, H. (2000). Evolution of ultramafic deposits in eastern U.S. and Puerto Rico as sources of magnesium for CO2 sequestration. LA-13328-MS, Los Alamos National Laboratory, Los Alamos, NM, USA.

  • Huijgen, W. J. J., & Comans, R. N. J. (2006). Carbonation of steel slags for CO2 sequestration: leaching of products and reaction mechanism. Environmental Technology, 40, 2790-2796.

  • Huijgen, W. J. J., Witkamp, G-J., & Comans, R. N. J. (2005). Mineral CO2 sequestration by steel slag carbonation. Environmental Science and Technology, 39, 9676-9682.

  • Huijgen, W. J. J., Witkamp, G. J., & Comans, R. N. J. (2006). Mechanisms of Aqueous Wollastonite Carbonation as a Possible CO2 Sequestration Process. Chemical Engineering Science, 61, 4242-4251.

  • Kluger, J. (200). Global warming: what now? Our feverish planet badly needs a cure. (2007, April 9) Time Magazine, 9, 50-109.

  • Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L. Jr., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170.

  • Lal, R. (2008): Sciences Carbon sequestration. Philosophical Transactions of The Royal Society London B Biological, 363(1492), 815-830.

  • Lasaga, A. C., & Berner, R. A. (1998). Fundamental aspects of quantitative models for geochemical cycles. Chemical Geology, 145(3-4), 161-175.

  • Mazzotti, M., Abanades, J. C., Allam, R., Lackner, K. S., Meunier, F., Rubin, E., Sanchez, J. C., Yogo, K., & Zevenhoven, R. (2005). Mineral carbonation and industrial uses of carbon dioxide In IPCC Special Report on Carbon Dioxide Capture and Storage. Edited by Metz, B. Davidson, O. de Coninck, H. Loos, M. Meyer, L. Intergovernmental Panel on Climate Change 2005. New York: Cambridge University Press.

  • Metz, B., Davidson, O., de Coninck, H., Loos, M., & Meyer, L. (eds) (2005). IPCC Special Report on Carbon Dioxide Capture and Storage (pp. 431). New York: Cambrige University Press , 431.

  • Montes-Hernandez, G., Daval, D., Findling, N., Chiriac, R., & Renard, F. 2012. Linear growth rate of nanosized calcite synthesized via gas-solid carbonation of Ca(OH)2 particles in a static bed reactor. Chemical Engineering Journal, 180, 237-244.

  • Morales-Flórez, V., Santos, A., Lemus, A., & Esquivias, L. (2011). Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration. Chemical Engineering Journal, 166, 132-137. DOI: 10.1016/j.cej.2010.10.039.

  • Morone, M., Costa, G., Polettini, A., Pomi, R., & Baciocchi, R. (2014). Valorization of steel slag by a combined carbonation and granulation treatment. Minerals Engineering, 59, 82-90. DOI: 10.1016/j.mineng.2013.08.009.

  • O’Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P., & Turner, P. C. (2000). CO2 storage in solid form: A study of direct mineral carbonation. In: Proceedings of the 5th International Conference on Greenhouse Gas Technologies. 13-16 August 2000 (pp. 322-327). Cairns, Australia: CSIRO Publishing.

  • O’Connor, W. K., Dahlin, D. C., Rush, G. E., Dahlin, C. L., & Collins, W. K. (2002). Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Minerals and Metallurgical Processing, 19(2), 95-101.

  • Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4, 333-337.

  • Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering, 109, 364-392. DOI: 10.1016/j.petrol.2013.03.013.

  • Pu, X. C., Gan, C. C., Wang, S. D., & Yang, C. H. (1988). Summary Reports of Research on Alkali-Activated Slag Cement and Concrete, v.1-6, Chongqing Institute of Architecture and Engineering, Chongqing (1988).

  • Rasul, M. G., Moazzem, S., & Khan, M. M. K. (2014). Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions. Energy, 64, 330-341. DOI: 10.1016/j.energy.2013.09.047.

  • Saldi, G. D., Jordan, G., Schott, J., & Oelkers, E. H., 2009. Magnesite growth rates as a function of temperature and saturation state. Geochimica Cosmochimica Acta, 73, 5646-5657.

  • Salman, M., Cizer, Ö., Pontikes, Y., Santos, R. M., Snellings, R., Vandewalle, L., Blanpain, B., & van Balen, K. (2014). Effect of accelerated carbonation on AOD stainless steel slag for its valorization as a CO2- sequestering construction material. Chemical Engineering Journal, 246, 39-52. DOI: 10.1016/j.cej.2014.02.051.

  • Sanna, A., Lacinska, A., Styles, M., & Maroto-Valer, M. M. (2014). Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration. Fuel Process Technology, 120, 128-135. DOI: 10.1016/j.fuproc.2013.12.012.

  • Santos, R. M., François, D., Mertens, G., Elsen, J., & van Gerven, T. (2013). Ultrasound-intensified mineral carbonation. Applied Thermal Engineering, 57, 154-163. DOI: 10.1016/j.applthermaleng.2012.03.035.

  • Schrag, D. P. (2007). Preparing to capture carbon. Science, 315, 812-813. DOI: 10.1126/science.1137632.

  • Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345, 486.

  • Sipilä, J., Teir, S., & Zevenhoven, R. (2007). Carbon dioxide sequestration by mineral carbonation. Literature review updates 2005-2007. Report VT 2008-1.

  • Stolaroff, J. K., Lowry, G. V., & Keith, D. W. (2005). Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Conversion and Management, 46, 687-699.

  • Tier, S., Eloneva, S., & Zevenhoven, R. (2005). Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management, 46, 2954-2979.

  • Uliasz-Bocheńczyk, A., Mokrzycki, E., Piotrowski, Z., & Pomykała, R. (2009). Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Procedia, 1, 4873-4879. DOI: 10.1016/j.egypro.2009.02.316.

  • Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2013). An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, 19-39. DOI: 10.1016/j.fuel.2012.10.001.

  • Walton, J. C., Bin-Shafique, S., Smith, R., Guitierrez, N., & Targuin, A. (1997). Role of carbonation in transient leaching of cementitious wasteforms. Environmental Science & Technology, 31, 2345-2349.

  • Wilczyńska-Michalik, W., Gasek, R., Dańko, J., & Michalik, M. (2009). Fly ash from coal and biomass cocombustion and its role in CO2 sequestration. Mineralogia Special Papers, 35, 114.

  • WMO, 2006: Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere using global observation up to December (2004) Geneva, Switzerland: World Meteorological Organization.

  • van Zomeren, A., van der Laan, S. R., Kobesen, H. B. A., Huijgen, W. J. J., & Comans, R. N. J. (2011). Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Management, 3111, 2236-2244. DOI: 10.1016/j.wasman.2011.05.022.


Journal + Issues