Mineral carbonation of metallurgical slags

Open access


Due to increasing emissions of greenhouse gases into the atmosphere number of methods are being proposed to mitigate the risk of climate change. One of them is mineral carbonation. Blast furnace and steel making slags are co-products of metallurgical processes composed of minerals which represent appropriate source of cations required for mineral carbonation. Experimental studies were performed to determine the potential use of slags in this process. Obtained results indicate that steel making slag can be a useful material in CO2 capture procedures. Slag components dissolved in water are bonded as stable carbonates in the reaction with CO2 from ambient air. In case of blast furnace slag, the reaction is very slow and minerals are resistant to chemical changes. More time is needed for minerals dissolution and release of cations essential for carbonate crystallisation and thus makes blast furnace slags less favourable in comparison with steel making slag.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bodor M. Santos R. M. van Gerven T. & Vlad M. (2013). Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation - a review. Central European Journal of Engineering 3 566-584. DOI: 10.2478/s13531-013-0115-8.

  • Chaurand P. Rose J. Domas J. & Bottero J-Y. (2006): Speciation of Cr and V within BOF steel slag reused in road construction. Journal of Geochemical Exploration 88 10-14.

  • Diener S. Andreas L. Herrmann I. Ecke H. & Lagerkvist A. (2010). Accelerated carbonation of steel slags in a landfill cover construction. Waste Management 30 132-139.

  • Drissen P. (2007). Binding of trace elements in steel slags. In: Proceedings of the Fifth European Slag Conference (Euroslag). 19-21 September 2007 (pp. 187-198). Luxembourg.

  • Engström F. Adolfsson D. Samuelsson C. Sandström Å. & Björkman B. (2013). A study of the solubility of pure slag minerals. Minerals Engineering 41 46-52. DOI: 10.1016/j.mineng.2012.10.004.

  • Fan L. S. & Park A. (2004). CO2 mineral sequestration in a high pressure high temperature 3-phase fluidized bed reactor. Canadian Journal of Chemical Engineering 81(3-4) 885-890.

  • Férnandez Bertos M. Simons S. J. R. Hills C. D. & Carey P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials B112 193-205.

  • Fix W. Heymann H. & Heinke R. (1969). Subsolidus relations in the system 2CaO•SiO2-3CaO•P2O5. Journal of the American Ceramic Society - Discussion and Notes 52 346-347.

  • Goff F. Guthrie G. Lipin B. Fite M. Chipera S. Counce D. Kluk E. & Ziock H. (2000). Evolution of ultramafic deposits in eastern U.S. and Puerto Rico as sources of magnesium for CO2 sequestration. LA-13328-MS Los Alamos National Laboratory Los Alamos NM USA.

  • Huijgen W. J. J. & Comans R. N. J. (2006). Carbonation of steel slags for CO2 sequestration: leaching of products and reaction mechanism. Environmental Technology 40 2790-2796.

  • Huijgen W. J. J. Witkamp G-J. & Comans R. N. J. (2005). Mineral CO2 sequestration by steel slag carbonation. Environmental Science and Technology 39 9676-9682.

  • Huijgen W. J. J. Witkamp G. J. & Comans R. N. J. (2006). Mechanisms of Aqueous Wollastonite Carbonation as a Possible CO2 Sequestration Process. Chemical Engineering Science 61 4242-4251.

  • Kluger J. (200). Global warming: what now? Our feverish planet badly needs a cure. (2007 April 9) Time Magazine 9 50-109.

  • Lackner K. S. Wendt C. H. Butt D. P. Joyce E. L. Jr. & Sharp D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy 20 1153-1170.

  • Lal R. (2008): Sciences Carbon sequestration. Philosophical Transactions of The Royal Society London B Biological 363(1492) 815-830.

  • Lasaga A. C. & Berner R. A. (1998). Fundamental aspects of quantitative models for geochemical cycles. Chemical Geology 145(3-4) 161-175.

  • Mazzotti M. Abanades J. C. Allam R. Lackner K. S. Meunier F. Rubin E. Sanchez J. C. Yogo K. & Zevenhoven R. (2005). Mineral carbonation and industrial uses of carbon dioxide In IPCC Special Report on Carbon Dioxide Capture and Storage. Edited by Metz B. Davidson O. de Coninck H. Loos M. Meyer L. Intergovernmental Panel on Climate Change 2005. New York: Cambridge University Press.

  • Metz B. Davidson O. de Coninck H. Loos M. & Meyer L. (eds) (2005). IPCC Special Report on Carbon Dioxide Capture and Storage (pp. 431). New York: Cambrige University Press 431.

  • Montes-Hernandez G. Daval D. Findling N. Chiriac R. & Renard F. 2012. Linear growth rate of nanosized calcite synthesized via gas-solid carbonation of Ca(OH)2 particles in a static bed reactor. Chemical Engineering Journal 180 237-244.

  • Morales-Flórez V. Santos A. Lemus A. & Esquivias L. (2011). Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration. Chemical Engineering Journal 166 132-137. DOI: 10.1016/j.cej.2010.10.039.

  • Morone M. Costa G. Polettini A. Pomi R. & Baciocchi R. (2014). Valorization of steel slag by a combined carbonation and granulation treatment. Minerals Engineering 59 82-90. DOI: 10.1016/j.mineng.2013.08.009.

  • O’Connor W. K. Dahlin D. C. Nilsen D. N. Rush G. E. Walters R. P. & Turner P. C. (2000). CO2 storage in solid form: A study of direct mineral carbonation. In: Proceedings of the 5th International Conference on Greenhouse Gas Technologies. 13-16 August 2000 (pp. 322-327). Cairns Australia: CSIRO Publishing.

  • O’Connor W. K. Dahlin D. C. Rush G. E. Dahlin C. L. & Collins W. K. (2002). Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Minerals and Metallurgical Processing 19(2) 95-101.

  • Oelkers E. H. Gislason S. R. & Matter J. (2008). Mineral carbonation of CO2. Elements 4 333-337.

  • Olajire A. A. (2013). A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering 109 364-392. DOI: 10.1016/j.petrol.2013.03.013.

  • Pu X. C. Gan C. C. Wang S. D. & Yang C. H. (1988). Summary Reports of Research on Alkali-Activated Slag Cement and Concrete v.1-6 Chongqing Institute of Architecture and Engineering Chongqing (1988).

  • Rasul M. G. Moazzem S. & Khan M. M. K. (2014). Performance assessment of carbonation process integrated with coal fired power plant to reduce CO2 (carbon dioxide) emissions. Energy 64 330-341. DOI: 10.1016/j.energy.2013.09.047.

  • Saldi G. D. Jordan G. Schott J. & Oelkers E. H. 2009. Magnesite growth rates as a function of temperature and saturation state. Geochimica Cosmochimica Acta 73 5646-5657.

  • Salman M. Cizer Ö. Pontikes Y. Santos R. M. Snellings R. Vandewalle L. Blanpain B. & van Balen K. (2014). Effect of accelerated carbonation on AOD stainless steel slag for its valorization as a CO2- sequestering construction material. Chemical Engineering Journal 246 39-52. DOI: 10.1016/j.cej.2014.02.051.

  • Sanna A. Lacinska A. Styles M. & Maroto-Valer M. M. (2014). Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration. Fuel Process Technology 120 128-135. DOI: 10.1016/j.fuproc.2013.12.012.

  • Santos R. M. François D. Mertens G. Elsen J. & van Gerven T. (2013). Ultrasound-intensified mineral carbonation. Applied Thermal Engineering 57 154-163. DOI: 10.1016/j.applthermaleng.2012.03.035.

  • Schrag D. P. (2007). Preparing to capture carbon. Science 315 812-813. DOI: 10.1126/science.1137632.

  • Seifritz W. (1990). CO2 disposal by means of silicates. Nature 345 486.

  • Sipilä J. Teir S. & Zevenhoven R. (2007). Carbon dioxide sequestration by mineral carbonation. Literature review updates 2005-2007. Report VT 2008-1.

  • Stolaroff J. K. Lowry G. V. & Keith D. W. (2005). Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Conversion and Management 46 687-699.

  • Tier S. Eloneva S. & Zevenhoven R. (2005). Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management 46 2954-2979.

  • Uliasz-Bocheńczyk A. Mokrzycki E. Piotrowski Z. & Pomykała R. (2009). Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Procedia 1 4873-4879. DOI: 10.1016/j.egypro.2009.02.316.

  • Vassilev S. V. Baxter D. Andersen L. K. & Vassileva C. G. (2013). An overview of the composition and application of biomass ash. Part 2. Potential utilisation technological and ecological advantages and challenges. Fuel 105 19-39. DOI: 10.1016/j.fuel.2012.10.001.

  • Walton J. C. Bin-Shafique S. Smith R. Guitierrez N. & Targuin A. (1997). Role of carbonation in transient leaching of cementitious wasteforms. Environmental Science & Technology 31 2345-2349.

  • Wilczyńska-Michalik W. Gasek R. Dańko J. & Michalik M. (2009). Fly ash from coal and biomass cocombustion and its role in CO2 sequestration. Mineralogia Special Papers 35 114.

  • WMO 2006: Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere using global observation up to December (2004) Geneva Switzerland: World Meteorological Organization.

  • van Zomeren A. van der Laan S. R. Kobesen H. B. A. Huijgen W. J. J. & Comans R. N. J. (2011). Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Management 3111 2236-2244. DOI: 10.1016/j.wasman.2011.05.022.

Journal information
Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 285 211 92
PDF Downloads 123 83 8