The chevkinite group: underestimated accessory phases from a wide range of parageneses

Open access


Chevkinite-group minerals are widespread in a very wide range of igneous and metamorphic parageneses, forming important components of accessory mineral assemblages. Their presence in a rock may be difficult to establish by standard optical techniques, which has contributed to their importance being underestimated; a combination of SEM and EMPA is recommended here. Currently, there are eleven IMAapproved members of the group but undoubtedly several more will be described in the near future. There is considerable compositional variation in the group, which can be expressed as:

REE + M2+C + M3+C = Ca2+ A + Sr + Ti4+C + Zr4+C

where A and C are structural sites. Chevkinite-group minerals strongly fractionate geochemically coherent pairs, such as LREE-HREE, Nb-Ta, Zr-Hf and Th-U, and thus play a critical role in geochemical modelling.

Arem, J.E., & Ito, J. (1971). Chevkinite and perrierite: synthesis, crystal growth, and polymorphism. American Mineralogist, 56, 307-319.

Belkin, H.E., Macdonald, R., & Grew, E.S. (2009). Perrierite from granulite facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Mineralogical Magazine, 73(1), 149-164.

Bonatti, S., & Gottardi, G. (1966). Un caso di poliformisma a strati in sorosilicati; perrierite and chevkinite. Periodico di Mineralogia, 35, 65-91.

Budding, K.E., Cunningham, C.G., Zielinski, R.A., Steven, T.A., & Stern, C.R. (1987). Petrology and chemistry of the Joe Lott Tuff Member of the Mount Belknap volcanics, Marysvale volcanic field, west-central Utah. U.S. Geological Survey Professional Paper, 1354, 47 pp.

Carlier, G., & Lorand, J.-P. (2008). Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the South Peruvian potassic province. Lithos, 104(1-4), 54-70. DOI: 10.1016/j.lithos.2007.11.008.

Chakhmouradian, A.R., & Mitchell, R.H. (1999). Primary, agpaitic and deuteric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at Pegmatite Peak, Bearpaw Mountains, Montana. Mineralogy and Petrology, 67(1-2), 85-110. DOI: 10.1007/BF01165118.

Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Belakovskiy, D.I. Göttlicher, J., Britvin, S.N. and Van, K.V. (2012). Christofschäferite-(Ce), IMA 2011-107. CNMNC Newsletter No. 13, June 2012, page 810; Mineralogical Magazine, 76, 807-817.

Chukanov, N.V., Blaß, G., Pekov, I.V., Belakovsky, D.I., Van, K.V., Rastsvetaeva,R.K. and Aksenov, S.M. (2011). Perrierite-(La), IMA 2010-089. CNMNC Newsletter No. 9, August 2011, page 2537; Mineralogical Magazine, 75, 2535-2540.

Della Ventura, G., Williams, C.T., Raudsepp, M., Bellatreccia, F., Caprilli, E., & Giordano, G. (2001). Perrierite- (Ce) and zirconolite from a syenitic ejectum of the Roccamonfina volcano (Latium, Italy): implications for the mobility of Zr, Ti and REE in volcanic environments. Neues Jahrbuch für Mineralogie Monatshefte, 9, 385-402.

Doelter, C. (1931). Handbuch der Mineralchemie. Volume 3. ; Dresden: Verlag von Theodor Steinkopff.

Gottardi, G. (1960). The crystal structure of perrierite. American Mineralogist, 45(1-2), 1-14.

Haggerty, S.E., & Mariano, A.N. (1983). Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Parana Basin carbonatites, South America. Contributions to Mineralogy and Petrology, 84(4), 365-381. DOI: 10.1007/BF01160288.

Hatert, F., & Burke, E.A.J. (2008). The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717-728. DOI : 10.3749/canmin.46.3.717.

Ito, J. (1967). A study of chevkinite and perrierite. American Mineralogist, 52, 1094-1104.

Kopylova, M.G., Gurney, J.J., & Daniels, L.R.M. (1997). Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contributions to Mineralogy and Petrology, 129(4), 366-384. DOI: 10.1007/s004100050343.

Macdonald, R., & Belkin, H.E. (2002). Compositional variation in minerals of the chevkinite group. Mineralogical Magazine, 66(6), 1075-1098. DOI: 10.1180/0026461026660078.

Macdonald, R., Bagiński, B., Dzierżanowski, P., Fettes, D.J. & Upton, B.G.J. (2013). Chevkinite-group minerals in UK Palaeogene granites: underestimated REE-bearing accessory phases. The Canadian Mineralogist, 51(2), 333-347. DOI: 10.3749/canmin.51.2.333.

Macdonald, R., Bagiński, B., Kartashov, P., Zozulya, D., Dzierżanowski, P. (2012). Chevkinite-group minerals from Russia and Mongolia: New compositional data metasomatite and ore deposits. Mineralogical Magazine, 76(3), 535-549. DOI:10.1180/minmag.2012.076.3.06,

Macdonald, R., Marshall, A.S., Dawson, J.B., Hinton, R.W., & Hill, P.G. (2002). Chevkinite-group minerals from salic volcanic rocks of the East Africa Rift. Mineralogical Magazine, 66(2), 287-299. DOI: 10.1180/0026461026620029.

Macdonald, R., Belkin, H.E., Wall, F., & Bagiński, B. (2009). Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Mineralogical Magazine, 73(5), 777-796. DOI:10.1180/minmag.2009.073.5.777.

Macdonald, R., Rogers, N.W., Bagiński, B., & Dzierżanowski, P. (2010). Distribution of gallium between phenocrysts and melt in peralkaline salic volcanic rocks, Kenya Rift Valley. Mineralogical Magazine, 74(2), 351-363. DOI:10.1180/minmag.2010.074.2.351.

Macdonald, R., Rogers, N.W., & Tindle, A.G. (2007). Distribution of germanium between phenocrysts and melt in peralkaline rhyolites from the Kenya Rift Valley. Mineralogical Magazine, 71(6), 703-713. DOI: DOI:10.1180/minmag.2007.071.6.703.

Makarochkin, B.A., Gonibesova, K.A., & Makarochkina, M.S. (1959). Chevkinite from the Ilmen Mountains. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva USSR, 88(5), 547-553 (in Russian).

Mashima, H., Akai, J., Nakamuta, Y., & Matsubara, S. (2008). Orthorhombic polymorph of rengeite from Ohmi region, central Japan. American Mineralogist, 93, 1153-1157.

McCurry, M. (1988). Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: implications for the genesis of peralkaline rhyolite ash flow tuffs. Journal of Geophysical Research, 93(B12), 14835-14855. DOI: 10.1029/JB093iB12p14835.

McDowell, S.D. (1979). Chevkinite from the Little Chief granite porphyry stock, California. American Mineralogist, 64, 721-727.

Miyajima, H., Matsubara, S., Miyawaki, R., Yokoyama, K., & Hirokawa, K. (2001). Rengeite, Sr4ZrTi4Si4O22, a new mineral, the Sr-Zr analogue of perrierite from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan. Mineralogical Magazine, 65(1), 111-120.

Miyajima, H., Miyawaki, R., Ito, K. (2002). Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan. European Journal of Mineralogy, 14(6), 1119-1128. DOI: 10.1127/0935-1221/2002/0014-1119.

Parodi, G.C., Della Ventura, G., Montana, A., Raudsepp, M. (1994). Zr-rich non metamict perrierite-(Ce) from holocrystalline ejecta in the Sabatini volcanic complex (Latium, Italy). Mineralogical Magazine, 58(393), 607-613.

Popov, V.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C., McCammon, C., & Bazhenova, L.F. (2001).

Polyakovite-(Ce), (REE,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2Si4O22, a new metamict mineral species from the Ilmen Mountains, southern Urals, Russia: mineral description and crystal chemistry. The Canadian Mineralogist, 39(4), 1095-1104. DOI:10.2113/gscanmin.39.4.1095.

Portnov, A.M. (1964). Strontium perrierite in the North Baikal region. Doklady of the Academy of Science USSR: Earth Sciences Section, 156, 118-120.

Segalstad, T.V., & Larsen, A.O. (1978). Chevkinite and perrierite from the Oslo region, Norway. American Mineralogist, 63, 499-505.

Semenov, Y.I., Kulakov, M.P., Kostynina, M.Y.,. Kazakova, M.Y., & Dudykina, A.S., (1966). Scandium content in the quartz-fluorite pegmatites of Kazakhstan. Geokhimiya, 2, 244-246.

Shen, G., Yang, G., & Xu, J. (2005). Maoniupingite-(Ce): A new rare-earth mineral from the Maoniuping rareearth deposit in Mianning, Sichuan, China. Sedimentary Geology and Tethyan Geology, 25, 210-216 (in Chinese with English abstract).

Sokolova, E., Hawthorne, F.C., Della Ventura, G., & Kartashov, P.M. (2004) Chevkinite-(Ce): crystal structure and the effect of moderate radiation-induced damage on site-occupancy refinement. The Canadian Mineralogist, 42(4), 1013-1025. DOI: 10.2113/gscanmin.42.4.1013.

Sun, S.-S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In A.D. Saunders & M.J. Norry (Editors), Magmatism in the Ocean Basins. Special Publication, Geological Society, London, 42, 315-345.

Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.

Verplanck, P.L., Farmer, G.L., McCurry, M., & Mertzman, S.A. (1999). The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico. Journal of Petrology, 40(4), 653-678. DOI: 10.1093/petroj/40.4.653.

Vlach, S.R.F., Gualda, G.A.R. (2007). Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98-121. DOI:10.1016/j.lithos.2006.12.003.

Xu, J., Yang, G., Li, G., Wu, Z., & Shen, G. (2008). Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup. American Mineralogist, 93, 740-744.

Yakovenchuk, V.N., Ivanyuk, G.Yu.,. Pakhomovsky, Ya.A., & Menshikov, Yu.P. (2005). Khibiny. F. Wall, F. (Ed.), Laplandia Minerals: Apatity. Published in association with the Mineralogical Society of Great Britain and Ireland. 468 pp.

Yang, Z., Ding, K., Giester, G. and Tillmans, E. (2012). Hezuolinite, (Sr,REE)4Zr(Ti,Fe3+,Fe2+)2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. European Journal of Mineralogy, 24(1), 189-196. DOI: 10.1127/0935-1221/2011/0023-2158.


The Journal of Mineralogical Society of Poland

Journal Information

CiteScore 2017: 0.82

SCImago Journal Rank (SJR) 2017: 0.272
Source Normalized Impact per Paper (SNIP) 2017: 0.342

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 140 14
PDF Downloads 33 33 3