Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex

Open access

Abstract

Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages. Semiquantitative petrogenetic grids for pegmatites in log aNa2SiO5 - log aH2O - log aHF space can be constructed using information on the composition and distribution of minerals in the pegmatites, including the Zr-rich minerals zircon, parakeldyshite, eudialyte, låvenite, wöhlerite, rosenbuschite, hiortdahlite and catapleiite, and the Ti-dominated minerals aenigmatite, zirconolite (polymignite), astrophyllite, lorenzenite, titanite, mosandrite and rinkite. The chemographic analysis indicates that although increasing peralkalinity of the residual magma (given by the activity of the Na2Si2O5 or Nds component) is an important driving force for the miaskitic to agpaitic transition, water, fluoride (HF) and chloride (HCl) activity controls the actual mineral assemblages forming during crystallization of the residual magmas. The most distinctive mineral in the miaskitic pegmatites is zirconolite. At low fluoride activity, parakeldyshite, lorenzenite and wöhlerite are stable in mildly agpaitic systems. High fluorine (or HF) activity favours minerals such as låvenite, hiortdahlite,rosenbuschite and rinkite, and elevated water activity mosandrite and catapleiite. Astrophyllite and aenigmatite are stable over large ranges of Nds activity, at intermediate and low water activities, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andersen T. Erambert M. Larsen A.O. & Selbekk R.S. (2010). Petrology of nepheline syenite pegmatites in the Oslo Rift Norway: Zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology 51(11) 2303-2325. DOI: 10.1093/petrology/egq058

  • Bellezza M. Merlino S. & Perchiazzi N. (2009a). Mosandrite: Structural and crystal-chemical relationships with rinkite. The Canadian Mineralogist 47 897-908. DOI: 10.3749/canmin.47.4.897

  • Bellezza M. Merlino S. Perchiazzi N. & Raade G. (2009b). “Johnstrupite”: A chemical and structural study. Atti della Società toscana di Science naturali Serie A 114 1-3.

  • Berthelsen A. Olerud S. & Sigmond E.M.O. (1996). Geologisk kart over Norge bergrunnskart OSLO 1: 250 000. Norges geologiske undersøkelse Trondheim Berzelius J. (1824). Undersökning af några Mineralier. 2. Polymignit. Kungliga Svenska Vetenskaps-Akademiens Handlingar 1824 338-345.

  • Brøgger W.C. (1890). Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit- und Nephelinsyenite. Zeitschrift für Krystallographie 16 1-235 + 1-663.

  • Christiansen C.C. Johnsen O. & Makovicky E. (2003). Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist 41 1203-1224.

  • Dahlgren S. (2010). The Larvik Plutonic Complex: The larvikite and nepheline syenite plutons and their pegmatites. In A.O. Larsen (Ed). The Langesundsfjord. History Geology Pegmatites Minerals (pp. 26-37). Salzhemmendorf Germany: Bode Verlag GmbH

  • Dons J.A. & Jorde K. (1978). Geologisk kart over Norge bergrunnskart SKIEN 1: 250 000. Norges geologiske undersøkelse Trondheim.

  • Erdmann A. (1840). Undersøkning av Leukophan ett nytt mineral från trakten av Brewig i Norige. Kungliga Svenska Vetenskaps-Akademiens Handlingar 1840 191-200.

  • Jarosewich E. & Boatner L.A. (1991). Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter 15 397-399.

  • Johnsen O. Ferraris G. Gault R.A. Grice J.D. Kampf A.R. & Pekov I.V. (2003). The nomenclature of eudialyte-group minerals. The Canadian Mineralogist 41785-794.

  • Khomyakov A.P. (1995). Mineralogy of hyperagpaitic alkaline rocks. Oxford and New York: Clarendon Press Oxford.

  • Larsen A.O. (2010). The Langesundsfjord. History Geology Pegmatites Minerals. Salzhemmendorf Germany: Bode Verlag GmbH.

  • Larsen A.O. Raade G. & Sæbø P.C. (1992). Lorenzenite from the Bratthagen nepheline syenite pegmatites Lågendalen Oslo Region Norway. Norsk Geologisk Tidsskrift 72(4) 381-384.

  • Larsen A.O. Åsheim A. & Gault R.A. (2005). Minerals of the eudialyte group from the Sagåsen larvikite quarry Porsgrunn Norway. Norsk Bergverksmuseets skriftserie 30 58-62.

  • Larsen B.T. Olaussen S. Sundvoll B. & Heeremans M. (2008). The Permo-Carboniferous Oslo Rift through six stages and 65 million years. Episodes 31(1) 52-58.

  • Liestøl G.B. (1956). Noen petrografiske og mineralogiske undersøkelser omkring pegmatittgangene i Langesundsfjorden. Unpublished MSc thesis University of Oslo Oslo Norway.

  • Marks M.A.W. Hettmann K. Schilling J. Frost B.R. & Markl G. (2011). The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology 52(3) 439-455. DOI: http://dx.doi.org/10.1093/petrology/egq086

  • Murad E. (2006). Mineralogy of aegirine from Låven island Langesundsfjorden southern Norway. Norwegian Journal of Geology 86 435-438.

  • Neumann E.-R. (1976). Compositional relations among pyroxenes amphiboles and other mafic phases in the Oslo Region plutonic rocks. Lithos 9(2) 85-109. DOI: http://dx.doi.org/10.1016/0024-4937(76)90028-1

  • Neumann E.-R. (1980). Petrogenesis of the Oslo Region larvikites and associated rocks. Journal of Petrology 21 498-531.

  • Neumann E.-R. Wilson M. Heeremans M. Spencer E.A. Obst K. Timmerman M.J. & Kirstein L. (2004). Carboniferous-Permian rifting and magmatism in southern Scandinavia and northern Germany: a review. In M.Wilson E. R. Neumann G. R. Davies M.J. Timmerman M. Heeremans & Larsen B.T. (Eds). Permo- Carboniferous Magmatism and Rifting in Europe (pp. 11-40). Geological Society London Special Publications 223. DOI: 10.1144/GSL.SP.2004.223.01.02

  • Oftedahl C. & Petersen J.S.1978. Southern part of the Oslo Rift. Norges geologiske undersøkelse Bulletin 337 163-182.

  • Petersen J.S. (1978). Structure of the larvikite-lardalite complex Oslo Region Norway and its evolution. Geologisches Rundschau 67(1) 330-342.

  • Pfaff K. Wenzel T. Schilling J. Marks M.A.W & Markl G. (2010). A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jarhbuch fur Mineralogie Abhandlungen 187(1) 69-81. DOI: 10.1127/0077-7757/2010/0166

  • Piilonen P. Lalonde A.E. McDonald A.M. Gault R.A. & Larsen A.O. (2003). Insights into astrophyllitegroup minerals. I. Nomenclature Composition and development of a standardized general formula. The Canadian Mineralogist 41 1-26. DOI: 10.2113/gscanmin.41.1.1

  • Pouchou J.L. & Pichoir F. (1984). A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale 3 13-38.

  • Raade G. & Mladeck M.H. (1977). Parakeldyshite from Norway. The Canadian Mineralogist 15 102-107.

  • Raade G. & Mladeck M.H. (1983). Janhaugite Na3Mn3Ti2Si4O15(OHFO)3 a new mineral from Norway. American Mineralogist 68 1216-1219.

  • Sahama T.G. (1978). The Nyiragongo main cone. Musée Royale de l’Afrique Centrale. Annales Scieces Géologique Série in-8 81 1-88.

  • Salvi S. & Williams-Jones A.E. (1995). Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton Quebec-Labrador Canada. American Mineralogist 80 1031-1040.

  • Sokolova E. (2006). From structure topology chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist 44 1273-1330. DOI: 10.2113/gscanmin.44.6.1273

  • Sokolova E. & Cámara F. (2008). From structure topology to chemical composition.VIII. Titanium silicates: the crystal chemistry of mosandrite from type locality of Låven (Skådön) Langesundsfjorden Larvik Vestfold Norway. Mineralogical Magazine 72(4) 887-897. DOI: 10.1180/minmag.2008.072.4.887

  • Strunz H. & Nickel E.H. (2001). Strunz mineralogical tables. 9th Edition. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägle u. Obermiller).

  • Sæbø P.C.1966. The first occurrence of the rare mineral barylite Be2BaSi2O7 in Norway. Norsk Geologisk Tidsskrift 46 335-348.

  • Sørensen H. (1997). The agpaitic rocks - an overview. Mineralogical Magazine 61(4) 485-498.

  • Ussing N.V. (1912). Geology of the country around Julianehaab Greenland. Meddelelser om Grønland 38 1-376

  • Weibye P.H. (1850). Neue Mineralien aus Norwegen beschrieben von P.H. Weibye; analysiert von N.J. Berlin K.A. Sjögren und J.B. von Borck (Erster Theil). Annalen der Physik und Chemie 79 299-304.

Search
Journal information
Impact Factor


CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 516 185 67
PDF Downloads 291 131 68